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ABSTRACT  

Within the framework of Nikiforov-Uvarov method, we obtained an 

approximate solution of the Schrodinger equation for the Energy Dependent 

Generalized inverse quadratic Yukawa potential model. The bound state 

energy eigenvalues for were computed for various vibrational and rotational 

quantum numbers. Special cases were considered when the potential 

parameters were altered, resulting into Energy Dependent Kratzer and 

Kratzer potential, Energy Dependent Kratzer fues and Kratzer fues 

potential, Energy Dependent Inverse quadratic Yukawa and Inverse 

quadratic Yukawa Potential, Energy Dependent Yukawa (screened 

Coulomb) and Yukawa (screened Coulomb) potential, and Energy 

Dependent Coulomb and Coulomb potential, respectively. Their energy 

eigenvalues expressions and numerical computations agreed with the 

already existing literatures.  
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I. INTRODUCTION 

Wave equations with energy dependent potentials have 

been in existence for over 80 years. They can be seen in 

relativistic quantum mechanics considering particle in an 

external electromagnetic field [1]-[3]. Energy-dependent 

potential has been studied in nonrelativistic and relativistic 

quantum mechanics [4]-[10]. Recently, researchers have 

showed renewed interest in the study of Energy Dependent 

Potential (in both relativistic and non-relativistic regime), 

some of the study amongst others are; [11] studied the 

Schrödinger equation in D-dimensions for an energy-

dependent Hamiltonian that linearly depends on energy and 

quadratic on the relative distance using the Nikiforov-Uvarov 

formalism.[12] showed the influence of the modification of 

the scalar product, found in the problems of the energy-

dependent potential, on the physical properties of the 

harmonic oscillator in one dimension. More so, they 

discussed the effect of this change on the thermodynamic 

properties of the oscillator. [13] solved the Dirac equation for 

the energy-dependent pseudo-harmonic and Mie-type 

potentials under the pseudospin and spin symmetries using 

the supersymmetry quantum mechanics. [4] solved the Dirac 

equation for the energy-dependent Yukawa potential 

including a tensor interaction term within the framework of 

the pseudospin and spin symmetry limits with arbitrary spin-

orbit quantum number using the Nikiforov–Uvarov method. 

Ikot et al. [14] solved the energy dependent Kratzer potential 

within the framework of non-relativistic quantum mechanics. 

[15] generalized Schrodinger equations that include the 

position-dependent mass was solved for systems featuring 

energy-dependent potentials. [16] studied the Dirac equation 

for an energy-dependent potential in the presence of spin and 

pseudospin symmetries with arbitrary spin-orbit quantum 

number κ. [17] also solved the Dirac equation for the energy-

dependent Coulomb (EDC) potential including a Coulomb-

like tensor (CLT) potential was studied in the presence of spin 

and pseudospin symmetries with arbitrary spin–orbit 

quantum number k by [16]. This solution was achieved within 
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the framework of the asymptotic iteration method. It is 

worthy to state here that to the best of our knowledge, no one 

can give a solid answer to the question “what is the most 

useful form for an Energy Dependent Potential (EDP)?” 

[16]. 

The generalized inverse quadratic Yukawa potential 

(GIQYP) is a superposition of the inverse quadratic Yukawa 

(IQY) and the Yukawa potential. It is asymptotic to a finite 

value as 𝑟 →  ∞ and becomes infinite at 𝑟 =  0 [18]. This 

potential has been solved within the framework of the Proper 

Quantisation Rule [19] and Eigenfunction was obtained via 

the Formula Method [20]. 

The Generalized inverse quadratic Yukawa potential 

model is of the form [18]: 

 

𝑉(𝑟) = −𝑉0 (1 +
𝑒−𝛼𝑟

𝑟
)
2

    (1a) 

 

It has been noted that differences do not exist between the 

behavior of the modified Yukawa potential and the inversely 

quadratic Yukawa potential [21], [22] or the Yukawa 

potential [23]. Its application to diverse areas of physics has 

been of great interest concern in recent times [24], [25]. In 

addition, several quantum mechanical models have been 

studied extensively both in the relativistic and non-relativistic 

terrain by several authors [26]-[34]. 

The Energy Dependent Generalized inverse quadratic 

Yukawa potential model is of the form: 

 

𝑉(𝑟, 𝐸𝑛,𝑙) = −
𝐴(1+𝜂𝐸𝑛,𝑙)𝑒

−2𝛼𝑟

𝑟2
−

𝐵(1+𝜂𝐸𝑛,𝑙)𝑒
−𝛼𝑟

𝑟
− (1 +

𝜂𝐸𝑛,𝑙)𝐶      (1b) 

 

where 𝐴 = 𝐶 = 𝑉0 and 𝐵 = 2𝑉0. 

The Generalized inverse quadratic Yukawa potential 

reduces to a constant potential when 𝐴 =  𝐵 = 0.  

The study of dimensions plays an important role in many 

areas of physics and the extension of physical problems to 

higher dimensional space is of great interest. [34] noted that 

the exact solutions of both the relativistic and nonrelativistic 

wave equation with certain physical potential in higher 

dimensions are remarkably important not only in physics and 

chemistry, but also in pure and applied mathematics. 

The organization of the work is as follows: In the next 

section, we, the review of the NU in Sect. 3, this method is 

applied method obtain the bound state solutions. In Sect. 4, 

we obtain numerical results while in the final section. In Sect. 

5 we discuss some special cases and in Sect. 6, we give the 

concluding remark. 

 

II. REVIEW OF NIKIFOROV-UVAROV METHOD 

The Nikiforov-Uvarov (NU) method is based on solving 

the hypergeometric-type second-order differential equations 

by means of the special orthogonal functions [35]. The main 

equation which is closely associated with the method is given 

in the following form [36], [37]. 

𝜓′′(𝑠) +
𝜏̃(𝑠)

𝜎(𝑠)
𝜓′(𝑠) + 

𝜎̃(𝑠)

𝜎2(𝑠)
𝜓(𝑠) = 0  (2) 

where 𝜎(𝑠) and 𝜎̃(𝑠) are polynomials at most second-degree, 

𝜏̃(𝑠) is a first-degree polynomial and 𝜓(𝑠) is a function of the 

hypergeometric type. 

The exact solution of (2) can be obtained by using the 

transformation: 

 

 𝜓(𝑠) =  𝜙(𝑠)𝑦(𝑠)    (3) 

 

This transformation reduces Eq. (2) into a hypergeometric-

type equation of the form: 

 

𝜎(𝑠)𝑦′′(𝑠) + 𝜏(𝑠)𝑦′(𝑠) + 𝜆𝑦(𝑠) = 0  (4) 

 

The function 𝜙(𝑠) can be defined as the logarithm 

derivative: 

 
𝜙′(𝑠)

𝜙(𝑠)
= 

𝜋(𝑠)

𝜎(𝑠)
     (5) 

 

where 

 

 𝜋(𝑠) =  
1

2
[𝜏(𝑠) − 𝜏̃(𝑠) ]    (5a) 

 

with 𝜋(𝑠) being at most a first-degree polynomial. The 

second 𝜓(𝑠) being 𝑦𝑛(𝑛) in Eq. (3), is the hypergeometric 

function with its polynomial solution given by Rodrigues 

relation: 

 

𝑦(𝑛)(𝑠) =
𝐵𝑛

𝜌(𝑠)

𝑑𝑛

𝑑𝑠𝑛
[𝜎𝑛𝜌(𝑠)]   (6) 

 

Here, 𝐵𝑛 is the normalization constant and 𝜌(𝑠) is the 

weight function which must satisfy the condition: 

 

(𝜎(𝑠)𝜌(𝑠))
′
= 𝜎(𝑠)𝜏(𝑠)    (7) 

 

𝜏(𝑠) =  𝜏̃(𝑠) + 2𝜋(𝑠)    (8) 

 

It should be noted that the derivative of ( )s  with respect 

to s  should be negative. The eigenfunctions and eigenvalues 

can be obtained using the definition of the following function 

( )s  and parameter  , respectively: 

 

𝜋(𝑠) =
𝜎′(𝑠)−𝜏̃(𝑠)

2
± √(

𝜎′(𝑠)−𝜏̃(𝑠)

2
)
2

− 𝜎̃(𝑠) + 𝑘𝜎(𝑠) (9) 

 

where 

 

 𝑘 = 𝜆 − 𝜋′(𝑠)      (10) 

 

The value of k  can be obtained by setting the discriminant 

of the square root in (9) equal to zero. As such, the new 

eigenvalue equation can be given as: 

 

𝜆𝑛 = −𝑛𝜏
′(𝑠) −

𝑛(𝑛−1)

2
𝜎′′(𝑠), 𝑛 = 0,1,2, …   (11) 

 



  RESEARCH ARTICLE 

European Journal of Applied Physics  

www.ej-physics.org 
 

 

                                                              
DOI: http://dx.doi.org/10.24018/ejphysics.2021.3.2.63                                                                                                                                                      Vol 3 | Issue 2 | April 2021 36 

 

III. BOUND STATE SOLUTION WITH ENERGY DEPENDENT 

GENERALIZED INVERSE QUADRATIC YUKAWA POTENTIAL IN 

D DIMENSION 

The radial Schrodinger equation in 𝐷 dimension can be 

written as [38], [39]: 

 

[
𝑑2𝑅𝑛𝑙

𝑑𝑟2
−

2𝜇𝑉(𝑟)

ℏ2
−

(𝐷+2ℓ−1)(𝐷+2ℓ−3)

4𝑟2
+

2𝜇𝐸𝑛𝑙

ℏ2
] 𝑅𝑛𝑙(𝑟) = 0

      (12) 

 

where 𝜇 is the reduced mass, 𝐸𝑛𝑙is the energy spectrum,ℏ is 

the reduced Planck’s constant and 𝑛 𝑎𝑛𝑑 𝑙 are the radial and 

orbital angular momentum quantum numbers respectively (or 

vibration-rotation quantum number in quantum chemistry). 

Substituting equation (1) into equation (12) gives: 

 

[
𝑑2𝑅𝑛𝑙

𝑑𝑟2
−

2𝜇

ℏ2
(−𝑉0 (1 +

𝑒−𝛼𝑟

𝑟
)
2

(1 + 𝜂𝐸𝑛,𝑙)) −

(𝐷+2ℓ−1)(𝐷+2ℓ−3)

4𝑟2
+

2𝜇𝐸𝑛𝑙

ℏ2
] 𝑅𝑛𝑙(𝑟) = 0   (13) 

 

Simplifying further (13) becomes: 

 

[
𝑑2

𝑑𝑟2
− 

2𝜇

ℏ2
 (−

𝐴(1+𝜂𝐸𝑛,𝑙)𝑒
−2𝛼𝑟

𝑟2
−

𝐵(1+𝜂𝐸𝑛,𝑙)𝑒
−𝛼𝑟

𝑟
− (1 +

𝜂𝐸𝑛,𝑙)𝐶) −
(𝐷+2ℓ−1)(𝐷+2ℓ−3)

4𝑟2
+

2𝜇𝐸𝑛𝑙

ℏ2
] 𝑅𝑛𝑙 = 0  (14) 

 

Employing the Pekeris type approximation scheme [40], 

which is given by: 

 
1

𝑟2
=

4𝛼2𝑒−2𝛼𝑟

(1−𝑞𝑒−2𝛼𝑟)2
 and 

1

𝑟
=

2𝛼𝑒−𝛼𝑟

(1−𝑞𝑒−2𝛼𝑟)
   (15) 

 

Equation (14) becomes: 

 

𝑑2𝑅𝑛ℓ(𝑟)

𝑑𝑟2
+

1

(1−𝑒−2𝛼𝑟)2
[
2𝜇(𝐸𝑛𝑙+𝐶(1+𝜂𝐸𝑛,𝑙))

ℏ2
(1 − 𝑒−2𝛼𝑟)2  +

4𝜇𝐵𝛼(1+𝜂𝐸𝑛,𝑙)𝑒
−2𝛼𝑟

ℏ2
(1 − 𝑒−2𝛼𝑟) +  

8𝜇𝐴𝛼2(1+𝜂𝐸𝑛,𝑙)𝑒
−4𝛼𝑟

ℏ2
−

(𝐷+2ℓ−1)(𝐷+2ℓ−3)4𝛼2𝑒−2𝛼𝑟

4
] 𝑅𝑛ℓ(𝑟)   (16) 

 

Equation (16) can be simplified into the form and 

introducing the following dimensionless abbreviations: 

 

{
  
 

  
 −𝜀𝑛 =

𝜇(𝐸𝑛𝑙+𝐶(1+𝜂𝐸𝑛,𝑙))

2ℏ2𝛼2

𝛽 =
2𝜇𝐴(1+𝜂𝐸𝑛,𝑙)

ℏ2

𝜒 =
𝜇𝐵(1+𝜂𝐸𝑛,𝑙)

ℏ2𝛼

𝛾 =
(𝐷+2ℓ−1)(𝐷+2ℓ−3)

4 }
  
 

  
 

   (17) 

And using the transformation 𝑠 = 𝑒−2𝛼 𝑟 so as to enable us 

to apply the NU method as a solution of the hypergeometric 

type: 

  
𝑑2𝑅𝑛ℓ(𝑟)

𝑑𝑟2
= 4𝛼2𝑠2

𝑑2𝑅𝑛ℓ(𝑠)

𝑑𝑠2
+  4𝛼2𝑠

𝑑𝑅𝑛 ℓ(𝑠)

𝑑𝑠
  (18) 

𝑑2𝑅𝑛ℓ(𝑠)

𝑑𝑠2
+

1−𝑞𝑠

𝑠(1−𝑞𝑠)

𝑑𝑅𝑛ℓ(𝑠)

𝑑𝑠
+

1

𝑠2(1−𝑞s)2
[−𝑠2(𝜀𝑛 − 𝛽 + 𝜒) +

𝑠(2𝜀𝑛 + 𝜒 − 𝛾) − 𝜀𝑛]𝑅𝑛ℓ(𝑠) = 0    (19) 

 

Comparing (19) and (2), we have the following 

parameters: 

 

{

𝜏̃(𝑠) = 1 − 𝑠

𝜎(𝑠) = 𝑠(1 − 𝑠)

𝜎̃(𝑠) = −𝑠2(𝜀𝑛 − 𝛽 + 𝜒) + 𝑠(2𝜀𝑛 + 𝜒 − 𝛾) − 𝜀𝑛

} (20) 

 

Substituting these polynomials into (9), we get ( )s  to be: 

 

𝜋(𝑠) = −
𝑞𝑠

2
± √(𝑎 − 𝑘)𝑠2 + (𝑏 + 𝑘)𝑠 + 𝑐  (21) 

 

where 

 

{

𝑎 =
1

4
+ 𝜀𝑛 − 𝛽 + 𝜒

𝑏 = −(2𝜀𝑛 + 𝜒 − 𝛾)
𝑐 = 𝜀𝑛

}    (22) 

 

To find the constant ,k  the discriminant of the expression 

under the square root of (21) must be equal to zero. As such, 

we have that: 

 

𝑘±= −(𝜒 − 𝛾) ± 2√𝜀𝑛 (
1

4
− 𝛽 + 𝛾)  (23) 

 

Substituting Eq. (23) into Eq. (21) yields: 

 

𝜋(𝑠) = −
𝑠

2
± [(√𝜀𝑛 + √(

1

4
− 𝛽 + 𝛾)) 𝑠 − √𝜀𝑛] (24) 

 

From the knowledge of NU method, we choose the 

expression ( )s − which the function ( )s  has a negative 

derivative. This is given by: 

 

𝑘− = −(𝜒 − 𝛾) − 2√𝜀𝑛 (
1

4
− 𝛽 + 𝛾)  (25) 

 

with ( )s  being obtained as: 

 

𝜏(𝑠) = 1 − 2𝑠 − 2 [(√(
1

4
− 𝛽 + 𝛾) + √𝜀𝑛) 𝑠 − √𝜀𝑛](26) 

 

Referring to (10), we define the constant   as: 

𝜆 = −
1

2
− (√(

1

4
− 𝛽 + 𝛾) + √𝜀𝑛) + (𝛾 − 𝜒) −

2√𝜀𝑛 (
1

4
− 𝛽 + 𝛾)       (27) 

 

Substituting (27) into (11) and carrying out simple algebra, 

where: 
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𝜏′(𝑠) = −2(1 + (√(
1

4
− 𝛽 + 𝛾) + √𝜀𝑛)) < 0 (28) 

 

and 

 

𝜎′′(𝑠) = −2      (29) 

 

We have  

𝜀𝑛 =
1

4
[
(𝑛+

1

2
+√

1

4
−𝛽+𝛾)

2

+𝛽−𝜒

((𝑛+
1

2
+√

1

4
−𝛽+𝛾))

]

2

   (30) 

 

Substituting (17) into (30) yields the energy eigenvalue 

equation of the Energy Dependent Generalized Inverse 

Quadratic Yukawa Potential in 𝐷 dimension in the form: 

 

𝐸𝑛 ℓ = −𝐶(1 + 𝜂𝐸𝑛,𝑙) −

ℏ2𝛼2

2𝜇

[
 
 
 
 
 
(𝑛+

1

2
+√

1

4
− 
2𝜇𝐴(1+𝜂𝐸𝑛,𝑙)

ℏ2
+
(𝐷+2ℓ−1)(𝐷+2ℓ−3)

4
)

2

+
2𝜇𝐴(1+𝜂𝐸𝑛,𝑙)

ℏ2
−
𝜇𝐵(1+𝜂𝐸𝑛,𝑙)

ℏ2𝛼

(𝑛+
1

2
+√

1

4
− 
2𝜇𝐴(1+𝜂𝐸𝑛,𝑙)

ℏ2
+
(𝐷+2ℓ−1)(𝐷+2ℓ−3)

4
)

]
 
 
 
 
 
2

  

(31) 

The corresponding wave functions can be evaluated by 

substituting ( ) ( )s and s −  from (24) and (20), respectively 

into (5) and solving the first order differential equation. This 

gives: 

 

𝛷(𝑠) = 𝑠√𝜀𝑛(1 − 𝑠)
1

2
+√

1

4
−𝛽+𝛾

   (32) 

 

The weight function ( )s  from (7) can be obtained as: 

 

𝜌(𝑠) = 𝑠2√𝜀𝑛(1 − 𝑠)
2√

1

4
−𝛽+𝛾

   (33) 

 

From the Rodrigues relation of (6), we obtain: 

 

𝑦𝑛(𝑠) ≡ 𝑁𝑛,𝑙𝑃𝑛

(2√𝜀𝑛,2√
1

4
−𝛽+𝛾)

(1 − 2𝑠)  (34) 

 

where 
( ),

nP
 

 is the Jacobi Polynomial. 

Substituting 𝛷(𝑠)  𝑎𝑛𝑑  𝑦𝑛(𝑠) from (32) and (34) 

respectively into (3), we obtain: 

𝜓𝑛(𝑠) = 𝑁𝑛,𝑙  𝑠
√𝜀𝑛(1 − 𝑠)

1

2
+√

1

4
−𝛽+𝛾

𝑃𝑛

(2√𝜀𝑛 ,2√
1

4
−𝛽+𝛾)

(1 −

2𝑠)      (35) 

 

IV. SPECIAL CASES (DEDUCTIONS FROM (31)) 

In this section, we take some adjustments of constants in 

Eq. (1a and b) to have the following cases: 

A. Kratzer Potential 

If 𝛼 → 0 and if set 𝐴 = −𝑉1, 𝐵 = 2𝑉1 and 𝐶 =
−𝑉1Equation 1c reduces to: 

 

𝑉(𝑟) =
𝐴(1+𝜂𝐸𝑛,𝑙)

𝑟2
−

𝐵(1+𝜂𝐸𝑛,𝑙)

𝑟
+ 𝐶(1 + 𝜂𝐸𝑛,𝑙) (36) 

 

Equation (31) becomes the energy dependent Kratzer 

Potential in 𝐷 dimesnsions: 

 

𝐸𝑛 ℓ = 𝐶(1 + 𝜂𝐸𝑛,𝑙) −

 𝜇 𝐵2(1+𝜂𝐸𝑛,𝑙)
2

2ℏ2(𝑛+
1

2
+√

1

4
+ 
2𝜇𝐴(1+𝜂𝐸𝑛,𝑙)

ℏ2
+
(𝐷+2ℓ−1)(𝐷+2ℓ−3)

4
)

2  (37) 

 

If we set 𝜂 = 0, the energy equation reduces to energy 

equation for Kratzer potential in 𝐷 dimesnsions: 

 

𝐸𝑛 ℓ = 𝐶 −
𝜇𝐵2

2ℏ2(𝑛+
1

2
+√

1

4
+ 
2𝜇𝐴

ℏ2
+
(𝐷+2ℓ−1)(𝐷+2ℓ−3)

4
)

2 (38) 

 

Comments: (38) is the Energy eigenvalue equation for the 

Kratzer potential in 𝐷 dimensions. If 𝐷 = 3 reduces to energy 

equation for Kratzer potential in 3D, (45) is very consistent 

with the result obtained in (125) of [37]. 

B. Inversely Quadratic Yukawa Potential 

If 𝐵 = 𝐶 = 0 the potential (Equation 1a) reduces to the 

Inverse Quadratic Yukawa Potential [41]. 

 

𝑉(𝑟) = −
𝐴(1+𝜂𝐸𝑛,𝑙)𝑒

−2𝛼𝑟

𝑟2
    (39) 

𝐸𝑛 ℓ =

−
ℏ2𝛼2

2𝜇

[
 
 
 
 
 
(𝑛+

1

2
+√

1

4
− 
2𝜇𝐴(1+𝜂𝐸𝑛,𝑙)

ℏ2
+
(𝐷+2ℓ−1)(𝐷+2ℓ−3)

4
)

2

+
2𝜇𝐴(1+𝜂𝐸𝑛,𝑙)

ℏ2

(𝑛+
1

2
+√

1

4
− 
2𝜇𝐴(1+𝜂𝐸𝑛,𝑙)

ℏ2
+
(𝐷+2ℓ−1)(𝐷+2ℓ−3)

4
)

]
 
 
 
 
 
2

      (40) 

If we set 𝜂 = 0, the energy equation reduces to energy 

equation for Inverse Quadratic Yukawa Potential in 𝐷 

dimesnsions: 

 

𝐸𝑛 ℓ = −
ℏ2𝛼2

2𝜇
[
(𝑛+

1

2
+√

1

4
− 
2𝜇𝐴

ℏ2
+
(𝐷+2ℓ−1)(𝐷+2ℓ−3)

4
)

2

+
2𝜇𝐴

ℏ2

(𝑛+
1

2
+√

1

4
− 
2𝜇𝐴

ℏ2
+
(𝐷+2ℓ−1)(𝐷+2ℓ−3)

4
)

]

2

 (41) 

 

Comments: Equation (41) is the energy equation for the 

Inverse Quadratic Yukawa Potential in 𝐷 Dimensions. If 𝐷 =
3 , (41) reduces to the energy equation in 3D, which is 
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identical to the results in; (37) of [42], (18) of [43] and (47) 

of [44]. 

C. Yukawa Potential 

If and 𝐴 = 𝐶 = 0 the potential (Equation 1c) reduces to the 

Yukawa Potential [4]. [4] solved the Dirac equation for the 

energy-dependent Yukawa potential including a tensor 

interaction term within the framework of the pseudospin and 

spin symmetry limits with arbitrary spin-orbit quantum 

number. The limiting cases of the model was reduced to the 

energy-dependent Yukawa and Coulomb potentials, 

respectively. 

 

𝑉(𝑟) = −
𝐵(1+𝜂𝐸𝑛,𝑙)𝑒

−𝛼𝑟

𝑟
    (42) 

 

𝐸𝑛 ℓ = −
ℏ2𝛼2

2𝜇
[
(𝑛+

1

2
+√

1

4
+
(𝐷+2ℓ−1)(𝐷+2ℓ−3)

4
)

2

−
𝜇𝐵(1+𝜂𝐸𝑛,𝑙)

ℏ2𝛼

(𝑛+
1

2
+√

1

4
+
(𝐷+2ℓ−1)(𝐷+2ℓ−3)

4
)

]

2

 (43) 

 

If we set 𝜂 = 0, the energy equation reduces to energy 

equation for Yukawa Potential in 𝐷 Dimensions: 

 

𝐸𝑛 ℓ = −
ℏ2𝛼2

2𝜇
[
(𝑛+

1

2
+√

1

4
+
(𝐷+2ℓ−1)(𝐷+2ℓ−3)

4
)

2

−
𝜇𝐵

ℏ2𝛼

(𝑛+
1

2
+√

1

4
+
(𝐷+2ℓ−1)(𝐷+2ℓ−3)

4
)

]

2

 (44) 

 

Comments: (44) is the energy eigenvalue equation for the 

Yukawa potential in 𝐷 dimensions. If 𝐷 = 3, (44) becomes 

identical with (87) and (15) reported in [45] and [46], 

respectively. 

D. Kratzer-Feus Potential 

If we set 𝐶 = 0, 𝛼 → 0, (1c) reduces to the Coulomb plus 

Inverse-Square Potential [47], [48]: 

 

𝑉(𝑟) = −
𝐵

𝑟
+

𝐴

𝑟2
     (45) 

 

𝐴 = 𝐶 = −𝑉1 and 𝐵 = 2𝑉1  

𝐸𝑛 ℓ = −
 2𝜇𝐵2(1+𝜂𝐸𝑛,𝑙)

2

ℏ2(2𝑛+1+√ 
8𝜇𝐴(1+𝜂𝐸𝑛,𝑙)

ℏ2
+(𝐷+2ℓ−1)2)

  (46) 

 

If we set 𝜂 = 0, the energy equation reduces to energy 

equation for Kratzer-Fues Potential in 𝐷 dimesnsions: 

 

𝐸𝑛 ℓ =
−2𝜇𝐵2

ℏ2(2𝑛+1+√ 
8𝜇𝐴

ℏ2
+(𝐷+2ℓ−2)2)

2   (47) 

Comments: (47) is also known as the Kratzer-Feus 

potential, this potential was studied by [48] in arbitrary 

dimensions. If we set ℏ = 𝜇 = 1, (47) fully agrees with the 

result reported in eq. (28) of [48]. (37) is also consistent with 

the result obtained in (15) of [47].  

E. Coulomb Potential 

If 𝐴 = 𝐶 = 0, 𝛼 → 0 the potential (Equation 1c) reduces to 

the Coulomb Potential [34]. 

 

𝑉(𝑟) = −
𝐵

𝑟
     (48) 

 

𝐸𝑛 ℓ = −
 𝜇𝐵2(1+𝜂𝐸𝑛,𝑙)

2

2ℏ2(𝑛+
1

2
+√

1

4
+
(𝐷+2ℓ−1)(𝐷+2ℓ−3)

4
)

2  (49) 

 

If we set 𝜂 = 0, the energy equation reduces to energy 

equation for Coulomb Potential in 𝐷 dimesnsions: 

 

𝐸𝑛 ℓ = −
 𝜇𝐵2

2ℏ2(𝑛+
1

2
+√

1

4
+
(𝐷+2ℓ−1)(𝐷+2ℓ−3)

4
)

2  (50) 

 

Comments: (50) is the energy equation for Coulomb 

potential in 𝐷 Dimensions. This result is consistent with the 

result obtained in (7.14) of [34]. 
 

TABLE I: THE BOUND STATE ENERGY LEVELS (IN UNITS OF FM−1) OF THE 

GIQYP FOR VARIOUS VALUES OF 𝑛, 𝑙 AND FOR ℏ = 𝜇 = 1, 

 𝑉0 = 0.5 𝑎𝑛𝑑 𝛼 = 0.001 

𝑛 𝑙 
𝐸𝑛𝑙 
𝜂 = 0 

𝐸𝑛𝑙 
𝜂 = 0.3 

𝐸𝑛𝑙 
𝜂 = 0.4 

0 1 -0.68960354 -0.540881135 -0.506890535 

1 1 -0.571807619 -0.478344718 -0.45428128 
2 1 -0.537127791 -0.45790939 -0.436746066 

3 1 -0.522410094 -0.44889584 -0.428947535 

0 2 -0.563050854 -0.474126328 -0.450862611 

1 2 -0.53372401 -0.456181624 -0.435330535 
2 2 -0.520749321 -0.448032007 -0.42823602 

3 2 -0.513895979 -0.443670831 -0.424428249 

0 3 -0.532601875 -0.455583817 -0.434834803 
1 3 -0.520190696 -0.447728815 -0.427983558 

2 3 -0.513578774 -0.4434969 -0.424283086 

3 3 -0.509646332 -0.440963924 -0.422065022 

0 4 -0.519902567 -0.44757064 -0.427851451 

1 4 -0.513414329 -0.443405797 -0.424206841 

2 4 -0.509543853 -0.440906841 -0.422017192 
3 4 -0.507053026 -0.439293102 -0.42060214 

 

TABLE II: THE BOUND STATE ENERGY LEVELS (IN UNITS OF FM−1) OF THE 

GIQYP FOR VARIOUS VALUES OF 𝑛, 𝑙 AND FOR ℏ = 𝜇 = 1,  

𝑉0 = 0.5 𝑎𝑛𝑑 𝛼 = 0.01 

𝑛 𝑙 
𝐸𝑛𝑙 
𝜂 = 0 

𝐸𝑛𝑙 
𝜂 = 0.3 

𝐸𝑛𝑙 
𝜂 = 0.4 

0 1 -0.677413346 -0.533276163 -0.500165487 
1 1 -0.561940037 -0.471450998 -0.448062163 

2 1 -0.528190997 -0.451485229 -0.430921372 

3 1 -0.514145048 -0.442922673 -0.423531854 

0 2 -0.55338674 -0.467294042 -0.444686873 

1 2 -0.524911823 -0.449816583 -0.429554613 

2 2 -0.512594774 -0.442124652 -0.422877789 
3 2 -0.506388292 -0.438268817 -0.419543693 

0 3 -0.523833592 -0.449241354 -0.42907784 

1 3 -0.512076165 -0.441846493 -0.422647408 
2 3 -0.506112992 -0.43812357 -0.419424336 

3 3 -0.502880256 -0.43616801 -0.417753812 

0 4 -0.511809303 -0.441701803 -0.42252723 

1 4 -0.505970901 -0.438047907 -0.41936201 
2 4 -0.502802325 -0.43612858 -0.41772203 

3 4 -0.501087669 -0.435171326 -0.416932685 
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TABLE III: THE BOUND STATE ENERGY LEVELS (IN UNITS OF FM−1) OF 

THE GIQYP FOR VARIOUS VALUES OF 𝑛, 𝑙 AND FOR ℏ = 𝜇 = 1,  

𝑉0 = 1 𝑎𝑛𝑑 𝛼 = 0.001 

𝑛 𝑙 
𝐸𝑛𝑙 
𝜂 = 0 

𝐸𝑛𝑙 
𝜂 = 0.3 

𝐸𝑛𝑙 
𝜂 = 0.4 

0 1 -2.9940045 -1.095985476 -0.953730354 
1 1 -1.4970045 -0.909932541 -0.820368029 

2 1 -1.2197845 -0.843534551 -0.771214559 

3 1 -1.122760125 -0.814219641 -0.749065228 

0 2 -1.302201872 -0.883072695 -0.80268238 
1 2 -1.155363939 -0.831952923 -0.763421879 

2 2 -1.093938232 -0.808367119 -0.745076568 
3 2 -1.062548532 -0.795710385 -0.735161319 

0 3 -1.143685817 -0.828799823 -0.761180195 

1 3 -1.088310737 -0.806742392 -0.743910796 

2 3 -1.059418944 -0.794772607 -0.73448474 
3 3 -1.042468019 -0.787587976 -0.728806789 

0 4 -1.085664968 -0.805938767 -0.743328245 

1 4 -1.057929862 -0.794305782 -0.734144741 
2 4 -1.041548733 -0.787294122 -0.728592128 

3 4 -1.031076397 -0.782753693 -0.724989228 

 

TABLE IV: THE BOUND STATE ENERGY LEVELS (IN UNITS OF FM−1) OF 

THE GIQYP FOR VARIOUS VALUES OF 𝑛, 𝑙 AND FOR ℏ = 𝜇 = 1,  

𝑉0 = 1 𝑎𝑛𝑑 𝛼 = 0.01 

𝑛 𝑙 
𝐸𝑛𝑙 
𝜂 = 0 

𝐸𝑛𝑙 
𝜂 = 0.3 

𝐸𝑛𝑙 
𝜂 = 0.4 

0 1 -2.940450000 -1.085469075 -0.945254024 

1 1 -1.470450000 -0.899255077 -0.811503393 

2 1 -1.198450000 -0.833117822 -0.762452911 
3 1 -1.103512500 -0.804156172 -0.740561286 

0 2 -1.279268339 -0.872291081 -0.793693742 

1 2 -1.135367365 -0.821569833 -0.754665745 
2 2 -1.075445609 -0.798394601 -0.73663523 

3 2 -1.045120125 -0.786188347 -0.727102695 

0 3 -1.123949057 -0.818442092 -0.752437387 
1 3 -1.069983263 -0.796805959 -0.735495805 

2 3 -1.042124745 -0.785295278 -0.726461699 

3 3 -1.026091933 -0.778625634 -0.721241813 

0 4 -1.067417989 -0.796021807 -0.734927697 
1 4 -1.040702385 -0.784852132 -0.726140704 

2 4 -1.025236123 -0.778359523 -0.721050146 

3 4 -1.015671687 -0.774402898 -0.717976939 

 

 

 
Fig. 1. The variation of the Potential energy for various values of the 

energy (𝐸𝑛𝑙) as a function of 𝑟. We choose 𝑉0 = 0.5 ,𝜂 = 0.3 and 

 𝛼 = 0.001. 

 

 
Fig. 2. The variation of the Potential energy for various values of the 

energy slope parameter (𝜂) as a function (𝑟). We choose 𝑉0 = 0.5 , 

𝐸𝑛𝑙 = 0.1 and 𝛼 = 0.001. 

 

 

 
Fig. 3. The variation of the ground state (𝑛 =  0) energy level for various 

values of the energy slope parameter(𝜂) as a function of 𝑙. We choose 

𝑉0 = 0.5 , and 𝛼 = 0.001 in 3𝐷. 

 

 

 
Fig. 4. The variation of the first excited state (𝑛 =  1) energy level for 

various values of the energy slope parameter(𝜂) as a function of 𝑙.  
We choose 𝑉0 = 0.5 , and 𝛼 = 0.001 in 3𝐷. 
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Figure 5: The variation of the ground state (𝑛 =  0) energy level for 

various values of the energy slope parameter(𝜂 ≤ 0) as a function of 𝑙.  
We choose 𝑉0 = 0.5 , and 𝛼 = 0.001 in 3𝐷. 

 

 

 
Fig. 6. The variation of the first excited state (𝑛 =  1) energy level for 

various values of the energy slope parameter(𝜂 ≤ 0) as a function of 𝑙.  
We choose 𝑉0 = 0.5 , and 𝛼 = 0.001 in 3𝐷. 

 

 

 
Fig. 7. The variation of the ground state (𝑛 =  0) energy level for values of 

the energy slope parameter(𝜂) as a function of 𝐷. We choose 𝑙 = 1, 
𝑉0 = 0.5 , and = 0.001. 

 

 
Fig. 8. The variation of the First excited state (𝑛 =  1) energy level for 

values of the energy slope parameter(𝜂) as a function of 𝐷.  

We choose 𝑙 = 1 , 𝑉0 = 0.5 , and 𝛼 = 0.001  

 

 

 
Fig. 9. The variation of the ground state (𝑛 =  0) energy level for various 

values of the Rotational Quantum Number(𝑙) as a function of 𝑉0.  

We choose = 0.3 , and 𝛼 = 0.001 in 3𝐷. 

 

 

 
Fig. 10. The variation of the First excited state (𝑛 =  1) energy level for 

various values of the Rotational Quantum Number(𝑙) as a function of 𝑉0. 

We choose = 0.3 , and 𝛼 = 0.001 in 3𝐷. 
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Fig. 11. The variation of the ground state (𝑛 =  0) energy level for various 

values of the Rotational Quantum Number(𝑙) as a function of 𝜇.  

We choose 𝑙 = 0.3 , 𝑉0 = 0.5 and 𝛼 = 0.001 in 3𝐷. 

 

 
Fig. 12. The variation of the First excited state (𝑛 =  1) energy level for 

various values of the Rotational Quantum Number(𝑙) as a function of 𝜇. 

We choose = 0.3 , 𝑉0 = 0.5 and 𝛼 = 0.001 in 3𝐷. 

 

V. DISCUSSION  

In our study, the energy eigenvalues of the Energy 

Dependent Generalized Inverse Quadratic Yukawa Potential 

(EDGIQYP) model were computed using (31), for different 

values of the energy slope parameters given(𝜂) which are 

presented in Table I-IV in 3D. When 𝜂 = 0 , the energy 

equation (31) reduces to the Energy for Generalized Inverse 

Quadratic Yukawa Potential (EDGIQYP) model, and the 

corresponding numerical eigenvalues presented in Tables I-

IV for 𝜂 = 0 agrees perfectly with the result presented in 

Table 1 of [18] in the absence of the energy dependence.  

We have plotted the shape of the Energy Dependent 

Generalized Inverse Quadratic Yukawa Potential 

(EDGIQYP) model in Fig. 1, 2. This figure gives an insight 

into the behaviour of the potential. Also, the variation of the 

energy eigenvalues with different parameters such as 

Dimensions (𝐷) , coupling strength 𝑉0 and particle mass ( 𝜇) 
are shown in Fig. 7–12 respectively, for various values of 

n and . In these figures, there is a decrease in energy 

eigenvalues as the potential strength increases (quasi 

asymptotic) in the ground state energy level. There was an 

increase in energy as dimensions’ increases for both the the 

ground state and first excite energy levels respectively. It is 

evident also that as the energy slope parameter (for 𝜂 ≥ 0) 
increases the energy values increase too.  

In Fig. 3 and 4, The variation of the ground state (𝑛 =  0) 
energy level and first excited state (𝑛 =  1 state for various 

values of the energy slope parameter(𝜂) as a function of 𝑙 
were plotted. We choose 𝑉0 = 0.5 , and 𝛼 = 0.001 in 3𝐷. It 

was observed that as the rotational quantum number increases 

the energy increases for various values of 𝜂. In Fig. 5 and 6, 

the variation of the ground state (𝑛 =  0) and first excited 

state (𝑛 =  1 states energy level for the different values of the 

energy slope parameter( for 𝜂 ≤ 0) as a function of 𝑙. We 

choose 𝑉0 = 0.5 , and 𝛼 = 0.001 in 3𝐷. In the first excited it 

is observed that the energy becomes more negative (more 

attractive) for increasing 𝜂 and 𝑙. In the ground state, there 

existed an irregular behaviour as some points broke off due 

to the presence complex values which are unacceptable for 

bound state solutions. 

 

VI. CONCLUSION 

In this study, the approximate bound state solutions of the 

Schrodinger equation with Energy Dependent Generalized 

Inverse Quadratic Yukawa Potential (EDGIQYP) model 

were obtained, via the Nikiforov-Uvarov method. The energy 

eigenvalues of were computed and special cases considered. 

Our results were consistent with the results in available 

literature. The shape of the potential model was plotted, and 

this gives a better understanding to the behaviour of the 

potential model. The variation of the combined energy 

eigenvalue with the potential parameters (𝐷, 𝑉0 and 𝜇) were 

also plotted. It was discovered that the energy eigenvalues 

decrease as the various potential strength (𝑉0) increase in the 

ground state. The present study can be extended to scrutinize 

the thermodynamic properties of energy dependent systems 

[49]-[55]. More so, this study could be extended by applying 

this energy dependent models to study quarks [56]-[67]. 
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