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Arbitrary /-Solutions of the Schrodinger Equation in
Arbitrary Dimensions for the Energy Dependent
Generalized Inverse Quadratic Yukawa Potential

P. O. Ushie, C. M. Ekpo, T. O. Magu, and P. O. Okoi

ABSTRACT

Within the framework of Nikiforov-Uvarov method, we obtained an
approximate solution of the Schrodinger equation for the Energy Dependent
Generalized inverse quadratic Yukawa potential model. The bound state
energy eigenvalues for were computed for various vibrational and rotational
guantum numbers. Special cases were considered when the potential
parameters were altered, resulting into Energy Dependent Kratzer and
Kratzer potential, Energy Dependent Kratzer fues and Kratzer fues
potential, Energy Dependent Inverse quadratic Yukawa and Inverse
quadratic Yukawa Potential, Energy Dependent Yukawa (screened
Coulomb) and Yukawa (screened Coulomb) potential, and Energy
Dependent Coulomb and Coulomb potential, respectively. Their energy
eigenvalues expressions and numerical computations agreed with the
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I. INTRODUCTION

Wave equations with energy dependent potentials have
been in existence for over 80 years. They can be seen in
relativistic quantum mechanics considering particle in an
external electromagnetic field [1]-[3]. Energy-dependent
potential has been studied in nonrelativistic and relativistic
quantum mechanics [4]-[10]. Recently, researchers have
showed renewed interest in the study of Energy Dependent
Potential (in both relativistic and non-relativistic regime),
some of the study amongst others are; [11] studied the
Schrodinger equation in D-dimensions for an energy-
dependent Hamiltonian that linearly depends on energy and
quadratic on the relative distance using the Nikiforov-Uvarov
formalism.[12] showed the influence of the modification of
the scalar product, found in the problems of the energy-
dependent potential, on the physical properties of the
harmonic oscillator in one dimension. More so, they
discussed the effect of this change on the thermodynamic
properties of the oscillator. [13] solved the Dirac equation for
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the energy-dependent pseudo-harmonic and Mie-type
potentials under the pseudospin and spin symmetries using
the supersymmetry quantum mechanics. [4] solved the Dirac
equation for the energy-dependent Yukawa potential
including a tensor interaction term within the framework of
the pseudospin and spin symmetry limits with arbitrary spin-
orbit quantum number using the Nikiforov-Uvarov method.
Ikot et al. [14] solved the energy dependent Kratzer potential
within the framework of non-relativistic quantum mechanics.
[15] generalized Schrodinger equations that include the
position-dependent mass was solved for systems featuring
energy-dependent potentials. [16] studied the Dirac equation
for an energy-dependent potential in the presence of spin and
pseudospin symmetries with arbitrary spin-orbit quantum
number x. [17] also solved the Dirac equation for the energy-
dependent Coulomb (EDC) potential including a Coulomb-
like tensor (CLT) potential was studied in the presence of spin
and pseudospin symmetries with arbitrary spin—orbit
quantum number k by [16]. This solution was achieved within
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the framework of the asymptotic iteration method. It is
worthy to state here that to the best of our knowledge, no one
can give a solid answer to the question “what is the most
useful form for an Energy Dependent Potential (EDP)?”
[16].

The generalized inverse quadratic Yukawa potential
(GIQYP) is a superposition of the inverse quadratic Yukawa
(IQY) and the Yukawa potential. It is asymptotic to a finite
value as r — oo and becomes infinite at r = 0 [18]. This
potential has been solved within the framework of the Proper
Quantisation Rule [19] and Eigenfunction was obtained via
the Formula Method [20].

The Generalized inverse quadratic Yukawa potential
model is of the form [18]:

e«
r

S 2
V) = -vo (1+5) (1a)

It has been noted that differences do not exist between the
behavior of the modified Yukawa potential and the inversely
quadratic Yukawa potential [21], [22] or the Yukawa
potential [23]. Its application to diverse areas of physics has
been of great interest concern in recent times [24], [25]. In
addition, several quantum mechanical models have been
studied extensively both in the relativistic and non-relativistic
terrain by several authors [26]-[34].

The Energy Dependent Generalized inverse quadratic
Yukawa potential model is of the form:

_A(1+nEng)e 29" B(1+nEp )e” "
r2 r

V(r,Eyy) =

nEn,l)C

-(1+

(1b)

where A = C =V, and B = 2V,

The Generalized inverse quadratic Yukawa potential
reduces to a constant potential when A = B = 0.

The study of dimensions plays an important role in many
areas of physics and the extension of physical problems to
higher dimensional space is of great interest. [34] noted that
the exact solutions of both the relativistic and nonrelativistic
wave equation with certain physical potential in higher
dimensions are remarkably important not only in physics and
chemistry, but also in pure and applied mathematics.

The organization of the work is as follows: In the next
section, we, the review of the NU in Sect. 3, this method is
applied method obtain the bound state solutions. In Sect. 4,
we obtain numerical results while in the final section. In Sect.
5 we discuss some special cases and in Sect. 6, we give the
concluding remark.

Il. REVIEW OF NIKIFOROV-UVAROV METHOD

The Nikiforov-Uvarov (NU) method is based on solving
the hypergeometric-type second-order differential equations
by means of the special orthogonal functions [35]. The main
equation which is closely associated with the method is given
in the following form [36], [37].

7(s) a(s)

P + 129 (s) + Z2y(s) = 0 @
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where ¢(s) and 6 (s) are polynomials at most second-degree,
7(s) is afirst-degree polynomial and ¥ (s) is a function of the
hypergeometric type.

The exact solution of (2) can be obtained by using the
transformation:

Y(s) = P(s)y(s) @)

This transformation reduces Eq. (2) into a hypergeometric-
type equation of the form:

a(s)y"(s) +1(s)y'(s) + Ay(s) = 0 (4)

The function ¢(s) can be defined as the logarithm
derivative:

P'(s) _ m(s)
#(s)  a(s) ()
where

n(s) = s[t(s) — #(s) ] (52)
with m(s) being at most a first-degree polynomial. The
second Y (s) being y,(n) in Eq. (3), is the hypergeometric
function with its polynomial solution given by Rodrigues
relation:

B, dm

(n) _
y(s) = o) o

[6"p(s)] (6)

Here, B, is the normalization constant and p(s) is the
weight function which must satisfy the condition:

(0()p(s)) = a(s)t(s) )
(s) = ©(s) + 2n(s) (8)

It should be noted that the derivative of z(s) with respect

to S should be negative. The eigenfunctions and eigenvalues
can be obtained using the definition of the following function
7(s) and parameter A, respectively:

a(s) = 29T | \/(U’(s)—f(s))z () + ko(s) (9)

2 2

where
k=21—1'(s) (10)

The value of k can be obtained by setting the discriminant
of the square root in (9) equal to zero. As such, the new
eigenvalue equation can be given as:

Ay = —nt'(s) — @a”(s), n=012,.. (11)
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I1l. BOUND STATE SOLUTION WITH ENERGY DEPENDENT
GENERALIZED INVERSE QUADRATIC YUKAWA POTENTIAL IN
D DIMENSION

The radial Schrodinger equation in D dimension can be
written as [38], [39]:

ARy 20V (r)  (D+20-1)(D+20-3)  2uEq _
[drg T Tz T ar2 + hzn]Rnl(r)—O

(12)

where u is the reduced mass, E,,;is the energy spectrum,# is
the reduced Planck’s constant and n and [ are the radial and
orbital angular momentum quantum numbers respectively (or
vibration-rotation quantum number in quantum chemistry).
Substituting equation (1) into equation (12) gives:

2 —ary 2
(o (Y ) -

(D+26-1)(D+26-3)  2uE
472 + hznl] Rnl(r) =0

(13)

Simplifying further (13) becomes:

[dz 2 (_ A(14+nEn)e %" B(1+nEni)e”*"

drz  p2 r? r - (1 +
(D+2£-1)(D+2£-3) | 2uEp
NEy,)C) — CHEIEED B Ry = (14)

Employing the Pekeris type approximation scheme [40],
which is given by:

1 4a2e™20T 1 2ae™"
r_2 - (1—qe—2ar)2 n : - (1-ge—2ar) (15)
Equation (14) becomes:
d%Rpe (1) 1 ZH(Enl+C(1+77En,l)) —2ar\2
dar? (1—e—2ar)2 [ "2 (1-e ¥+
-22ar 2 —4ar
4I»¢B“(1+7;§n.l)e 1- e—2ar) + 8uda (1+;LIZEn,l)e —
(D+26-1)(D+2£-3)4a%e~2%7
: ]Rnf(r) (16)

Equation (16) can be simplified into the form and
introducing the following dimensionless abbreviations:

H(Enl"'(:(1'*'77'3'n,l))w
2h2q2
g = 2uA(14mEn,)
h (17
_ uB(14nEy)
h2a
_ (D+2¢-1)(D+2¢-3)
4

And using the transformation s = e™2%" so as to enable us
to apply the NU method as a solution of the hypergeometric
type:

—&, =

d*Rpe(r) = 40252 d*Rpe(s) + 4azstn€(S)
dr? ds?

(18)
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d*Rpe(s) 1-gs_dRpe(s) 1
ds? s(1—-qs) ds s2(1—gs)?

S(Zgn +Xx - V) - gn]Rn{’(s) =0

[=s*(e, =B+ 1)+

(19)

Comparing (19) and (2),
parameters:

we have the following

f(s)=1-s
o(s)=s(1-ys)
6(s) =—s*(en—B+X) +sQen+x—v) —&n

(20)

Substituting these polynomials into (9), we get z(s) to be:

n(s) = =2 +/(@a—k)s?+ (b +k)s+c (21)
where

a =%+£n -B+x

b=—-Qe,+x—-7v) (22)

c=¢g,

To find the constant k, the discriminant of the expression

under the square root of (21) must be equal to zero. As such,
we have that:

(23)

Substituting Eqg. (23) into Eq. (21) yields:

n(s)=—§i[< £+ /G—ﬁ+y>>s—\/a] (24)

From the knowledge of NU method, we choose the
expression 7z(s)_which the function z(s) has a negative

derivative. This is given by:

ko=—(-n-2]en(;-6+7)

with z(s) being obtained as:

(s) =1 —25—2[( /G—,B +y) + sn>s—\/s_n](26)
Referring to (10), we define the constant A as:

l=—§—< IG-8+7)+ en>+(y—x)—

2jen (3-8 +7)

(25)

(27)

Substituting (27) into (11) and carrying out simple algebra,
where:
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7'(s) = =2 <1+<\/m+\/e_n)> <0 (28)
and

o"(s) = -2 (29)
We have

- (et ji_Tw)ZW—x ’ )

(e

Substituting (17) into (30) yields the energy eigenvalue
equation of the Energy Dependent Generalized Inverse
Quadratic Yukawa Potential in D dimension in the form:

Enp=—-C(1+nE,;) -

n++ |>—
2 |4 h2 4 h2 n2a

1, |1 ZuA(l‘rnEn,l) (D+26-1)(D+2£-3)
n+-+ [-— = +
2 4 h 4

(31)
The corresponding wave functions can be evaluated by
substituting 7z(s)_and o(s) from (24) and (20), respectively

into (5) and solving the first order differential equation. This
gives:

2 2
[< 1 Jl ZVA(l‘H?En,l).(D+2€—1)(D+2€—3)> IZHA(1+7IEn,l) MB(H’?En,l)]

b(s) = sVEn(1 — 5)sNEAHY (32)

The weight function p(s) from (7) can be obtained as:

p(s) = s3en(1 - )i

(33)
From the Rodrigues relation of (6), we obtain:
Yn($) = NyiP, (1—-2s) (34)
where Pn(‘g’g) is the Jacobi Polynomial.

Substituting @(s) and y,(s) from (32) and (34)
respectively into (3), we obtain:
1, |1 2./&n,2 l—,8+y
Yn(5) = Ny (1 = 5)2"\3 ‘“yn( ' )(1—

2s) (35)
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IV. SpPECIAL CASES (DEDUCTIONS FROM (31))

In this section, we take some adjustments of constants in
Eg. (1a and b) to have the following cases:

A. Kratzer Potential

If a->0 and if set A=-V;,, B=2V;, and C =
—V, Equation 1c reduces to:
A(1+77En,l) B(1+775n,l)
V(r) = =" ===+ C(1 +nEy)) (36)

Equation (31) becomes the energy dependent Kratzer
Potential in D dimesnsions:

Enp=C(14nEy) -

2
12 BZ(1+7IEn,l)

2h2<n+1+\/1+ ZMA(1+TIEn,z) . (D+2{’—1)(D+24’—3)>
3 +

2 @37)

2 hZ2 4

If we set n = 0, the energy equation reduces to energy
equation for Kratzer potential in D dimesnsions:

2
E,,=C-— KB

2
1 1, 2uA (D+2¢-1)(D+2¢-3)
2 /1 :
2h (n+2+\/4+ wzt 2

(38)

Comments: (38) is the Energy eigenvalue equation for the
Kratzer potential in D dimensions. If D = 3 reduces to energy
equation for Kratzer potential in 3D, (45) is very consistent
with the result obtained in (125) of [37].

B. Inversely Quadratic Yukawa Potential

If B =C = 0 the potential (Equation 1a) reduces to the
Inverse Quadratic Yukawa Potential [41].

A(147mEq )e 297
_ r2

V() = (39)

Ene =

2
1, 1 ZHA(l""?En,l),(D+2€—1)(D+2€—3) ,ZHA(H’?En,l)

L, Tl+E+ - Wz + +

h*a

4 h2

2
# 1, |1 ZﬂA(HﬂEn,l) (D+20-1)(D+2£-3)
nto+ |3- t

n2 4

(40)

If we set n = 0, the energy equation reduces to energy
equation for Inverse Quadratic Yukawa Potential in D
dimesnsions:

2
2

1 1 2uA, (D+2¢-1)(D+2¢-3 2uUA
2 (n+_+\/_u ( )( )) L2uA

K2 272 pZ " 4 12
En{z = — > — — (41)
u 1, |1_2pA (D+2¢-1)(D+2¢-3)
(et - 2 D)

Comments: Equation (41) is the energy equation for the
Inverse Quadratic Yukawa Potential in D Dimensions. If D =
3, (41) reduces to the energy equation in 3D, which is
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identical to the results in; (37) of [42], (18) of [43] and (47)
of [44].

C. Yukawa Potential

Ifand A = C = 0 the potential (Equation 1c) reduces to the
Yukawa Potential [4]. [4] solved the Dirac equation for the
energy-dependent Yukawa potential including a tensor
interaction term within the framework of the pseudospin and
spin symmetry limits with arbitrary spin-orbit quantum
number. The limiting cases of the model was reduced to the
energy-dependent Yukawa and Coulomb potentials,
respectively.

B(1+nEn )e %"

r

V@) = (42)

2 2
naly [LiD+20-1)D+20-3) P—B(l""iEn,l)
h2q? 24" 4 h2a

E,,=——
nt 2u 41y L @+2e-)(D+26-3)
ntata 4

If we set n = 0, the energy equation reduces to energy
equation for Yukawa Potential in D Dimensions:

2 2
1, |1, (D+2¢-1)(D+2¢-3)\ _puB
h2q2 (n+2+\ Pl 4 ha

2u (n+%+ %+(D+2£—1)(D+2€—3))

(43)

Epp=— (44)

4

Comments: (44) is the energy eigenvalue equation for the
Yukawa potential in D dimensions. If D = 3, (44) becomes
identical with (87) and (15) reported in [45] and [46],
respectively.

D. Kratzer-Feus Potential

If we set C = 0, @ — 0, (1c) reduces to the Coulomb plus
Inverse-Square Potential [47], [48]:

B, A
V(T) = —: + r_z (45)
A=C=-V,and B =2V,
2 2
E,,=— 2uB?(14nEn) (46)

8UA(1+NE.
n2 2n+1+\/¥+@+2€—1)2>

If we set n = 0, the energy equation reduces to energy
equation for Kratzer-Fues Potential in D dimesnsions:

_ —-2uB?
Enf -

(47)

2
h2<2n+1+ ?_ZA*'(D*'”_Z)Z)

Comments: (47) is also known as the Kratzer-Feus
potential, this potential was studied by [48] in arbitrary
dimensions. If we set A = u = 1, (47) fully agrees with the
result reported in eq. (28) of [48]. (37) is also consistent with
the result obtained in (15) of [47].
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E. Coulomb Potential

If A= C =0, a — 0the potential (Equation 1c) reduces to
the Coulomb Potential [34].

Ve =-2 (48)

2
HBZ(l‘HIEn,l)

2
2 1, |1, (D+2¢-1)(D+2¢-3)
2h (n+2+ 2

If we set n = 0, the energy equation reduces to energy
equation for Coulomb Potential in D dimesnsions:

Ene=— (49)

uB?
(D+2¢-1)(D+2¢-3) 2
of 1, |1, (D+26-1)(D+2£-3
2h (Tl+2+ 4+74 >

Comments: (50) is the energy equation for Coulomb
potential in D Dimensions. This result is consistent with the
result obtained in (7.14) of [34].

Ene=-— (50)

TABLE I: THE BOUND STATE ENERGY LEVELS (IN UNITS OF FM—1) OF THE
GIQYP FOR VARIOUS VALUESOF n, LANDFOR A = = 1,
Vo = 0.5and a = 0.001

n 1 Enl Enl Enl
n=0 n=20.3 n=04

0 1 -0.68960354  -0.540881135 -0.506890535
1 1 -0.571807619  -0.478344718  -0.45428128
2 1 -0.537127791  -0.45790939  -0.436746066
3 1 -0.522410094  -0.44889584  -0.428947535
0 2 -0.563050854  -0.474126328  -0.450862611
1 2 -0.53372401  -0.456181624  -0.435330535
2 2 -0.520749321  -0.448032007  -0.42823602
3 2 -0.513895979  -0.443670831  -0.424428249
0 3 -0.532601875  -0.455583817  -0.434834803
1 3 -0.520190696  -0.447728815  -0.427983558
2 3 -0.513578774 -0.4434969 -0.424283086
3 3 -0.509646332  -0.440963924  -0.422065022
0 4 -0.519902567  -0.44757064  -0.427851451
1 4 -0.513414329  -0.443405797  -0.424206841
2 4 -0.509543853  -0.440906841  -0.422017192
3 4 -0.507053026  -0.439293102  -0.42060214

TABLE II: THE BOUND STATE ENERGY LEVELS (IN UNITS OF FM—1) OF THE
GIQYP FOR VARIOUS VALUES OF n, LANDFOR A = = 1,
Vo =0.5and a = 0.01

n 1 Enl Enl Enl
n=0 n=0.3 n=04

0 1 -0.677413346 -0.533276163  -0.500165487
1 1 -0.561940037 -0.471450998  -0.448062163
2 1 -0.528190997 -0.451485229  -0.430921372
3 1 -0.514145048 -0.442922673 -0.423531854
0 2 -0.55338674 -0.467294042  -0.444686873
1 2 -0.524911823 -0.449816583  -0.429554613
2 2 -0.512594774 -0.442124652 -0.422877789
3 2 -0.506388292 -0.438268817  -0.419543693
0 3 -0.523833592 -0.449241354 -0.42907784
1 3 -0.512076165 -0.441846493 -0.422647408
2 3 -0.506112992 -0.43812357 -0.419424336
3 3 -0.502880256 -0.43616801 -0.417753812
0 4 -0.511809303 -0.441701803 -0.42252723
1 4 -0.505970901 -0.438047907 -0.41936201
2 4 -0.502802325 -0.43612858 -0.41772203
3 4 -0.501087669 -0.435171326  -0.416932685
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TABLE Ill: THE BOUND STATE ENERGY LEVELS (IN UNITS OF FM—1) OF 0
THE GIQYP FOR VARIOUS VALUES OF n, LANDFOR A = u = 1,

Vo =1and a = 0.001 N

n 1 Enl Enl Enl
n=0 n=20.3 n=04

0 1 -2.9940045 -1.095985476 -0.953730354 -4 0
1 1 -1.4970045 -0.909932541 -0.820368029 .
2 1 -1.2197845 -0.843534551 -0.771214559 VE,) -6 : n=o0
3 1 -1.122760125 -0.814219641 -0.749065228 n=o01
0 2 -1.302201872 -0.883072695 -0.80268238 ] n=-0.1
1 2 -1.155363939 -0.831952923 -0.763421879 -84
2 2 -1.093938232 -0.808367119 -0.745076568 3
3 2 -1.062548532 -0.795710385 -0.735161319 10l
0 3 -1.143685817 -0.828799823 -0.761180195
1 3 -1.088310737 -0.806742392 -0.743910796 ]
2 3 -1.059418944 -0.794772607 -0.73448474 -124; . . . : .
3 3 -1.042468019  -0.787587976 -0.728806789 0 2 ., 8 1o
0 4 -1.085664968 -0.805938767 -0.743328245 . - . .
1 4 -1.057929862 -0.794305782 -0.734144741 Fig. 2. The variation of the Potential energy for various values of the
2 4 -1.041548733 -0.787294122 -0.728592128 energy slope parameter (1) as a function (). We choose V, = 0.5,
3 4 -1.031076397  -0.782753693 -0.724989228 En =0.1and a = 0.001.

TABLE IV: THE BOUND STATE ENERGY LEVELS (IN UNITS OF FM—1) OF

THE GIQYP FOR VARIOUS VALUESOF n, LANDFORh = = 1,
Vo=1and a = 0.01
Enl Enl Enl =051
n l n=0 n=0.3 n=04 F
0 1 -2.940450000 -1.085469075 -0.945254024 H
1 1 -1.470450000 -0.899255077 -0.811503393 s
2 1 -1.198450000 -0.833117822 -0.762452911 -064 JoF
3 1 -1.103512500 -0.804156172 -0.740561286 E o :;‘? ¢ m=0
0 2 -1.279268339  -0.872291081  -0.793693742 ne “ls e n=01
1 2 -1.135367365 -0.821569833 -0.754665745 %% . n- D"?
2 2 -1.075445609 -0.798394601 -0.73663523 -07] % n=0.3
3 2 -1.045120125 -0.786188347 -0.727102695 e
0 3 -1.123949057 -0.818442092 -0.752437387 "o
1 3 -1.069983263 -0.796805959 -0.735495805 s
2 3 -1.042124745 -0.785295278 -0.726461699 -089 4,
3 3 -1.026091933 -0.778625634 -0.721241813 °
0 4 -1.067417989  -0.796021807  -0.734927697 0 2 H 6 8 10
1 4 -1.040702385 -0.784852132 -0.726140704 4
2 4 -1.025236123 -0.778359523  -0.721050146 Fig. 3. The variation of the ground state (n = 0) energy level for various
3 4 -1.015671687  -0.774402898  -0.717976939 values of the energy slope parameter(z) as a function of . We choose
Vo =0.5,and @ = 0.001 in 3D.
D —
r 0454
_2 -
—44 -0.50
4 : §
: 2
V(,E» 1% < E- 01 0] 84
5 - ° Ene” O Eny of . n=g1
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Fig. 1. The variation of the Potential energy for various values of the
energy (E,;) as a function of r. We choose V, = 0.5 ,n = 0.3 and

a = 0.001.
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Fig. 12. The variation of the First excited state (n = 1) energy level for
various values of the Rotational Quantum Number (1) as a function of .
We choose = 0.3, V, = 0.5and a = 0.001 in 3D.

V. DISCUSSION

In our study, the energy eigenvalues of the Energy
Dependent Generalized Inverse Quadratic Yukawa Potential
(EDGIQYP) model were computed using (31), for different
values of the energy slope parameters given(n) which are
presented in Table I-1V in 3D. When n = 0 , the energy
equation (31) reduces to the Energy for Generalized Inverse
Quadratic Yukawa Potential (EDGIQYP) model, and the
corresponding numerical eigenvalues presented in Tables I-
IV for n = 0 agrees perfectly with the result presented in
Table 1 of [18] in the absence of the energy dependence.

We have plotted the shape of the Energy Dependent
Generalized Inverse  Quadratic  Yukawa Potential
(EDGIQYP) model in Fig. 1, 2. This figure gives an insight
into the behaviour of the potential. Also, the variation of the
energy eigenvalues with different parameters such as
Dimensions (D) , coupling strength V,, and particle mass ( )
are shown in Fig. 7-12 respectively, for various values of
nand (. In these figures, there is a decrease in energy

eigenvalues as the potential strength increases (quasi
asymptotic) in the ground state energy level. There was an
increase in energy as dimensions’ increases for both the the
ground state and first excite energy levels respectively. It is
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evident also that as the energy slope parameter (for n = 0)
increases the energy values increase too.

In Fig. 3 and 4, The variation of the ground state (n = 0)
energy level and first excited state (n = 1 state for various
values of the energy slope parameter(n) as a function of [
were plotted. We choose I, = 0.5, and « = 0.001 in 3D. It
was observed that as the rotational quantum number increases
the energy increases for various values of n. In Fig. 5 and 6,
the variation of the ground state (n = 0) and first excited
state (n = 1 states energy level for the different values of the
energy slope parameter( forn < 0) as a function of . We
choose V, = 0.5, and @ = 0.001 in 3D. In the first excited it
is observed that the energy becomes more negative (more
attractive) for increasing n and . In the ground state, there
existed an irregular behaviour as some points broke off due
to the presence complex values which are unacceptable for
bound state solutions.

VI. CONCLUSION

In this study, the approximate bound state solutions of the
Schrodinger equation with Energy Dependent Generalized
Inverse Quadratic Yukawa Potential (EDGIQYP) model
were obtained, via the Nikiforov-Uvarov method. The energy
eigenvalues of were computed and special cases considered.
Our results were consistent with the results in available
literature. The shape of the potential model was plotted, and
this gives a better understanding to the behaviour of the
potential model. The variation of the combined energy
eigenvalue with the potential parameters (D, V, and u) were
also plotted. It was discovered that the energy eigenvalues
decrease as the various potential strength (V) increase in the
ground state. The present study can be extended to scrutinize
the thermodynamic properties of energy dependent systems
[49]-[55]. More so, this study could be extended by applying
this energy dependent models to study quarks [56]-[67].
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