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Abstract

In this article, we introduce a mixed-type implicit iterative scheme to approximate the
common fixed points of finite families of three uniformly L-Lipschitzian total
asymptotically pseudocontractive mappings in Banach spaces. Also, we prove some
strong convergence results of the proposed iterative scheme. Our results which are
new, improve and generalize the results of many prominent authors exiting in the
literature.
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1 Introduction

Let W denote the nonempty closed subset of a Banach space Q with dual Q. Let J
stand for the normalized duality mapping from W into 2"V and it is defined by

Jp)={r" e W {p.,r') = pl* = |71’} Yp e W, (1.1)

where (.,.) denote the generalized duality pairing. Throughout this manuscript, we
denote the single-valued-normalized duality by j, set of all positive integers is
denoted by R™, set of all natural number is denoted by N and set of all fixed points of
amapping M : W — W is denoted by F(M) = {p € W : Mp = p}. The fixed-point
theory is important to many applied and theoretical fields, such as linear and vari-
ational inequality, nonlinear analysis, approximation theory, dynamic system theory,
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mathematical modelling, mathematics of fractals, mathematical economics (equi-
librium problems, game theory and optimization problems), differential and integral
equations. For recent results on applications of fixed point, the reader may refer to
[2-5, 10-12, 19-23].

Definition 1.1 A self-mapping M defined on W is called uniformly Lipschitzian, if
for all p, g € W, there exists a constant L > 0 such that

[M*p — M*q|| <Lllp —gll, VveN. (1.2)

Definition 1.2 A self-mapping M defined on W is called pseudocontractive if for
any p,q € W, there exists j(p — q) € J(p — ¢) such that

(Mp — Mq.j(p — q)) <lp — q|*; (1.3)

Definition 1.3 [30, 31] A self-mapping M defined on WV is called asymptotically
pseudocontractive (AP) if there exists a sequence {A,} C [l,00) with 4, — 1 as
v — oo such that

(M'p—Mq,j(p—q)) <hJp—q|’, ¥v>1, and p,geW.  (1.4)

Definition 1.4 [27] A self-mapping M defined on W is called asymptotically
pseudocontractive in the intermediate sense (APIS) if there exists a sequence /s, C
[1,00) with A, — 1 as v — oo and j(p — q) € J(p — ¢) such that

limsup sup ((M'p—M’q,j(p —q)) — hllp — q||*) <0. (1.5)
Voo (pg)eW

Set
T, = max{O, sup ((M"'p —M"q.,j(p — q)) — hu|p — CIIZ)}.
PgEW
It implies that 7, >0, 7, — 0 as v — oo. So, (1.5) becomes

(M'p—M'q,jp—q)<hlp—ql’+1, Yv>1,pgew.  (16)

Definition 1.5 [28] A self-mapping M defined on W is called total asymptotically
pseudocontractive (TAP) if there exists sequences {y, } C [0,00) and {&,} C [0, 00)
with u, — 0 and &, — 0 as v — oo such that
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(M'p —M'q,j(p —q)) < p —qll’ + wd(lp — qll) + &, (1.7)

for all v>1 and p,q € W, where ¢ : [0,00) — [0,00) is a continuous and strictly
increasing function with ¢(0) = 0.

Remark 1.6 Suppose ¢(p) = p?, then (1.7) reduces to the class of APIS mappings as
follows:

(M'p—M"q,j(p —q)) < (1+m)llp — ql* + & (1.8)
forallv>1, p,qg € W. Set

1, = max{O, sup ((M'p —M"q,j(p —q)) — (1 +u,)llp — qllz)}-
PYEW

It is not hard to see that the class of APIS mappings is a proper subclass of the class
of TAP mappings.

Remark 1.7 1f 7, = 0, for all v> 1, then the class of APIS mappings reduces to the
class of AP mappings.

Following the above implications in Remarks 1.6 and 1.7, it follows that the class
of TAP mappings properly includes all other classes of mappings mentioned above.

In recent years, several iterative methods for approximating fixed points of TAP
mappings have been investigated by several researchers (see [1, 7, 8, 13] and the
references therein).

Implicit iterative schemes have been known to be more efficient than the
corresponding explicit iterative schemes. One of the first implicit iterative schemes
was studied in 2001 by Xu and Ori [37]. After this, many implicit iteration processes
for approximating fixed point of nonlinear mappings have been introduced and
studied by many authors (see, e.g., [1, 13, 16—18, 24-26, 32, 36-38]).

In 2007, Thahur [33] proposed the following composite implicit iteration process
for a finite family of asymptotically nonexpansive mappings as follows:

p0€W7

k(v
pv=(L=m)po s +mMwe, >, (1.9)

wy = (1 - tv)pv—l + tVMIEE,‘)/) 12
where {m,} and {#} are sequences in [0,1] andv= (k—1)N+1i,
i=i(v)e{l,2,..,N}, k=k(k)>1 is some positive integers and k(v) — oo as
v — 00.
Motivated and inspired by the above results, in this article, we introduce the
following mixed-type iterative method for three finite families of three uniformly Z-
Lipschitzian TAP mappings:
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po €W,

Pv = (1 - mv)pvfl + mvjwilgi‘)})wva

N 1.10
wy, = (l - tv)pv—l + tv[{,-lz(vg)zw Ve ( )

— k(v)
Zy = (1 - Cv)pv + CVG,(V)pw
where {m,},{t,} and {c,} are real sequences in [0,1] and v= (k — 1)N +1,
i=v(i)el={1,2,..,N}, k=k(v) > 1 is some positive integers and k(v) — oo as
v — 00.

Remark 1.8 Clearly, our new iterative scheme (1.10) properly contains the implicit
Mann iterative scheme [14], implicit Ishikawa iterative scheme [9], implicit Noor
iterative scheme [15], the iterative schemes (1.9) and several others iterative schemes
in the literature.

We will prove strong convergence theorems for our new iterative algorithm (1.10)
for common fixed points of finite families of three uniformly L-Lipschitzian TAP
mappings in Banach spaces. We also provide an example to validate the assumptions
in our main results. The results in this article extend, generalize and improve the
corresponding results in [13, 25, 26, 29, 33] and several others in the literature.

2 Preliminaries

We recall some relevant definition and lemmas that will be used in this work.

Definition 2.1 [6] A family {M;}", : C — C with & =N F(M,) # 0 is said to
satisfy condition (B) on WV if there exists a nondecreasing self function f defined on
[0, 00) with £(0) =0, f(s) > 0 for all s € (0,00) such that for each p € W

max {[lp — Mpll} =f(d(p,)). 2.1

1<i<N

Lemma 2.2 [36] Let J : Q — 29 be the normalized duality mapping. Then for any
p,q € Q, we have

lp+4l* < lIpl* + 2(a.j(p + ), Vilp+4) €J(p +q)- (2.2)

Lemma 2.3 [35] Let {p,} and {n,}, {v.} be sequences of nonnegative real numbers
satisfying the following inequality:

py < (L+m)p, + v, v 1. (2.3)

If >0 i, <oo and Y )2 v, <oo then lim p, exists. Additionally, if {p,} posses a
subsequence {p,, } such that p, — 0, then lim p, = 0.

V—00
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3 Main results

Firstly, we show that (1.10) can be applied to estimate the fixed points of TAP
mappings which is assumed to be continuous. Let M; be a L! —Lipschitz TAP
mapping with sequences @, € [0,00) and &} € [0,00) with @), — 0 and b/ — 0 as
v — oo foralli € [1,N], where N € N. Let H; be a Lj,—Lipschitz TAP mapping with
sequences /! € [0,00) and d’ € [0,00) with 7 — 0 and &’ — 0 as v — oo for all
i 6 [ N], where N € N. Let G, be a L! —Lipschitz TAP mapping with sequences

€ [0,00) and I € [0,00) with #/ — 0 and I/ — 0 as v — oo for all i € [1,N],
Where N eN.

Let the mapping 7, : W — W be defined by

k(v
Ty(p) = (1 = m)pu1 + vaiJQ{u —t)pe

o (3.1)
+6HO (1= e)p +e,Gpl}, Yv>1.
From (3.1), we have
ITu(p) = Tul@)]l = mlIM {(1 = t)pos + tH (1~ >p+ch<<?p1}
~ M1 = )pot +6H (1= e)g + Gl
<maL|H (1= e)p +eGp) - Hl.’;ij) [(1- cv)q +aGydl
<mut L2[(1 = )|lp — gqll + & |Gl )p = Gyl
<mt,L2[(1 = ¢,)llp — qll + e.Lllp — 4]
= mt,L*[(1+e(L = 1D)]llp — gl (32)

for all p,q € W, where L = max{L, .. 7L;V,L1 .. LZV,L;, LY}
Assume m,t,L*[(1 4+ ¢, (L —1))]<1 for all v>1, by (3.2), it implies that the
mapping 7, is a contraction. Recalling Banach contraction principle, it follow that a

unique point p, € W exist such that

k(v
pv="Tpy) = (1 = m)py1 +mM3{(1 = t,)py

+1 H(())[(l —¢)p +chf.€((vv)>p]}, Vv>1.

This shows that the implicit iteration process (1.10) is well defined. Thus, the
sequence (1.10) can be applied to estimate the common fixed points of three finite
family of uniformly L-Lipschitzian TAP mappings.

Lemma 3.1 Let Q be a Banach space and VW be a nonempty close convex subset of
Q. Leti € I = [1,N],where N € N. Let M; : W — W be a finite family of uniformly
L! ~Lipschitzian TAP mappings with sequences {a.} C [0,00) and {b'} C [0,00),
where a, — 0 and b, — 0 as v — oo, H; : W — W be a finite family of uniformly
L) —Lipschitzian TAP mappings with sequences {f!} C [0,00) and {d'} C [0, c0),
where f1— 0 and d.— 0 as v— oo and G;: W — W be a finite family of
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uniformly L;fLipscitzian TAP mappings with sequences {n.} C [0,00) and
{6} C [0,00), where n,— 0 and IL—0 as v— oo, for each i€l. Let
w, = max{a,,fv,n,}, where a,=max{d :i€l}, f,=max{f:i€l} and

n,=max{n :i€l}. Let &, =max{b,,d,l}, where b, =max{l :icl},

d, = max{d’ : i € I}andl, = max{l : i € I}. Suppose &= (N, F(M,)) NN,

F(H))) ﬂ(ﬂfil F(G))) # 0. Let ¢(r) = max{¢;(r) : i € I}, for each r > 0. Assume
that there exist K, K* > 0 such that ¢(e) <K*e® for all e>K. Let {m,}, {t,} and
{cy} be sequences in [0,1]. If the following assumptions are satisfied:

@ > m = oo
v=1

oo
() > m<oo;

v=1
(1ii) imv,uv<oo, imva<oo;
(V) > mty <oo;
v) :;vltsz[l +o(L—1)]<l¥w>1, where L=max{L) . LN Ll .. LV
Ly, .. LY}
Let {p,} be a sequence defined by (1.10). Then, vllrgc lpy — ¢*| exists for all
g* €.
Proof Let g* € S. From (1.10), we have
Iz — g*[| = (1 = c)pv + &Gy oy — ¢*
= (1= e)(py — ¢%) + (Gt — g¥)|
< (1=a)lpy — g*ll + G P — ¢*|l
< [lpv — ¢*[l + &Gy Py — 4]l
< v = ¢* I + e Lllpy — ¢*|
=(1+el)lpy —¢*
< (1+L)lpy = q*|- (33)
Using (1.10) and (3.3), we obtain
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k(v
ey = g*I1 =l1(1 = t)pucs + 6HL )z, — |
k(v
<(1=8)|pr = ¢* || + &l H 2 — ¢*|

(3.4)
<lpv-1 — ¢l + 6Ll — ¢*||
<|lpv-1 — ¢l + t,L(1 + L)|Ipy — g™
Now, from (1.10) and by Lemma 2.2, we have
oy = g*IF =I1(1 = m)py-1 + mMy S, — g* |
=1 = m)(pot = %) + m(MEw, — %)
< (1 =m) lpvr = g* I + 2m My w, — g%, j(py — 6¥)
=(1 = m)[pvr — g* | + 2m (M,
— M po+ M py— g%, j(py — ¢*))
=(1=m)llpv1 - ¢*I +2mv<M,.<i;>wv — My puj(pe = %) (3:5)
+ 20, (M py = 4% (py — 4¥)
<(1=m) ooy = g* I+ 2m My w, = M pllpe — * |

+2my (M py = g%, j(py — 4*))
< —mv) lpv-1—q H +2m,L||w, — pyllllpy —
+2m, (M = g%, j(py — 4%))-

By (1.10), we have that

Il

[wy —pull < Wy = poill + lPv-1 — 2ol
k(v

:”(l - mv)p,,,l + mvl_ll(f,))zv — Pv-1 H

+ a1 = [(1 = my)py—y +my M

|
SthI'I,-,ES,‘)})Zv = pv-i| +m oy _A/I,-(V) WVH
<ulHz = g% + b — ¢*|
+my|lpy-1 — ¢q ||+mv||M<v> wy —¢*||

<tL(1+L)|lpy — g% || + tllpv-1 — g™ || (3.6)

+ myllpo—t — q*|| + myL{||tv—1 — || + t.L(1 + L)|Ip, — ql|}
StvL(l +L)||Pv - q*H + thPv—l - q*H

+ mnHPV—l - q” + va”tV—l - CIH + mvva2(1 +L)Hpv - q*”
=[m, +t)llpv1 — g* | + L1+ L) + mt, L (1 + L)][|py — ¢
=[m(1+ L) + t]llpv1 — ¢*[| + LA + L)1+ mL)]py — ¢* ||
<fm(1+ L) + 6]llpv-1 — ¢* || + [WL(1 + L)(1 + L)][Ipy — ¢*||
={m,(1+L) + t,}lpv—1 — ¢*[| + t.L(1 + L)’ [, — ¢*]I.

Using (3.6) and (3.5), we get
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oy — * 7 < (1 = m)llpv-r — * I? + 2mL[{my (1 + L) + 1, }puoy — ¢*]|
+6,L(1+ L) py = g*Illpy — g% | + 2mM3 py — g* oy — 4%)
=(1 = m)pvr — g*I +2mL{my(1 + L) + 1.}
lpv—1 = a*lllpy — ¢ ||
+ 2myt,L* (1 + L) [|py — g

+ 2mv<M]E5;)pv - q* aj(pv - q*»

It is well known that

1
-1 = a*Illlpy = a* 1 < 5 (-1 = I + llpw — ). (38)
By (3.7) and (3.8), we obtain
llpy — q*”z <(1- mV)ZHPVfl - q*”Z +2m,L{m,(1 +L) +t,}
1 2 2
x5 (lpvr = g*II" + llpe = a*11°)
+ 2myt, L2(1 + L)?||py — ¢*|?
<[(1- mV)z +myL{m,(1 + L) + t,}][|pv—1 — q*”z
+ mt L2 (14 L) + myL{my(1 + L) + t,}] |y — ¢*|
+ 2mv<A/I,IE‘(,;)Pv - q*aj(pv - q*)>
Since T; (i € I) are TAP mappings, from (3.9) we obtain
oy — ¢* 1> < [(1 = my)* + mL{m,(1 + L) + t,}[lpy—1 — ¢*]°
+ Rmt,L2(1 + L) + myL{m,(1 + L) + t,}]|lpy — ¢*|I*
+2my(llpy — a* I + wd(llpy — ¢* 1) + &)
=[(1- mV)2 +myL{m,(1 + L) + t,}][[pv-1 — q*llz
+ 2myt, L2 (1 + L)* + m,L{m,(1 + L) + t,} + 2m,]||py — ¢* |

+ 2mup,(|lpy — g*1|) + 2my,.
(3.10)

Since ¢ is a strictly increasing function, we know that ¢(e) < ¢(K), if e<K;
¢(e) <K*é?, if e> K. In either case, one can have

Ple) < Pp(K) + K e (3.11)
From (3.10) and (3.11), we have

@ Springer



Some common fixed point results for three total...

v — g* 1> <[(1 = my)* + myL{m, (1 + L) + t,}][lpv-1 — ¢*|I?
+ 2mut,L*(1 + L)* + m,L{m,(1 + L) +1,}
+2m]llpy — q* P + 2mopt, d(K) + 2m,K* |y — g* | + 2m,¢,
=[(1 = m)* + mL{m,(1 + L) + t.}llpvr — ¢*|°
+ 2mt,L2(1 + L)* + myL{m,(1 + L) + £,}
+ 2my + 2m,K ) Ipy — g* | + 2mup, p(K) + 2m, ¢,
=Ryllpoet — g* | + Sullty — g* |1 + 2mup, p(K) + 2m, &,

(3.12)
where
R, =(1—m)* +mL{m,(1 +L) +1},
S, =2myt,L*(1 4+ L)* + myL{m,(1 + L) + t,} + 2m, + 2m,K*p,.
From (3.12), we obtain
R 2myu,p(K)  2m,é
* (12 v * (12 vy, vey
— < e
R,+S,—1 2, 2mup,p(M)
1+ i, — P 3.13
(14858 D s - 4 2 6.13)
2m,¢,
1-8,
Notice that
R, +S, —1=m +mL{m,(1+L)+t,} +2mt,L>(1 + L)* (3.14)
+mL{m,(1 + L) +t,} +2mK"p,. '
Now, set
V,=R,+S,— 1. (3.15)

Since lim m, = 0, by assumptions (ii)-(iv), we obtain

V—00

S, = 2myt,L>(1 + L)* + m,L{m,(1 + L) + 1,}
+2m, 4+ 2m,K*p, — 0 as v — oo,

it implies that a positive integer ng exists such that

1
§<1—SV§1, Y v>nyg.

Therefore, (3.13) yields
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v — q*”z <(L+2W)[lpv—1 — q*”z + 4m,u, ¢ (K) + 4m, &,

(3.16)
= (1 + Uv)Hpv—l - (]*Hz +Kva v v2n07

where

U, = 2K,,
K, = 4m,p,(K) + 4m,¢,.

By conditions (ii)—(iv), we can easily see that Y 2, U,<oco and ) .-, K, <oc.
Obviously, by (3.16), it follows that all the assumptions of Lemma 2.3 are performed.
Hence, lim ||p, — ¢*|| exists for all g* € 3. O

Theorem 3.2 Let Q be a Banach space and YV be a nonempty close convex subset
of QLet i€l=][1,N], where N € N. Let M;: W — W be a finite family of
uniformly L' —Lipschitzian TAP mappings with sequences {a.} C [0,00) and
{bi} C [0,00), where @', — 0 and b, — 0 as v — oo, H;: W — W be a finite
Jamily of uniformly L}—Lipschitzian TAP mappings with sequences {f'} C [0,00)
and {d'} C [0,00), where ' — 0 and d’ — 0 as v — oo and G;: W — W be a
finite family of uniformly L;fLipscitzian TAP mappings with sequences {n’} C
[0,00) and {I'} C [0,00), where i, — 0 and I' — 0 as n — oo, for each i € I. Let
w, = max{a,,fr,n,}, where a,=max{da :i€l}, f,=max{f/:i€l} and
n, =max{n’ :i € I}. Let &, = max{b,,d,,I,}, where b, = max{)vi ciel}, d, =
max{d :iel} and I, =max{l:iel}. Suppose = (N, FM))N
(N, FHE)) NN, F(G)) # 0. Let ¢(r) = max{¢,(r) : i € I}, for each r>0.
Assume that there exist K, K* > 0 such that ¢(e) < K*e* for all e > K. Let {m,}, {t,}
and {c,} be sequences in [0,1]. If the following assumptions are performed:

) 0

() Z m, = 00;
v=1
)

() > m<oo;
v=1

“ee > 0

(iii) Z mypl, < 00, E my¢, <oo;
n=1 v=1

(iv) > myt,<oo;
v=1

V) mtL*[1+v(L 1)<, Yv>1, where L= max{Lrln, ...,L],X,
Ly oo L Ly oo, LY}

Let {p,} be a sequence defined by (1.10). Then, {p,} converges strongly to a point in
S if and only if
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liminf d(p,,S) = 0, (3.17)

n—oo

where d(p,S) stands for the distance of p to set <, that is, d(p,<S)
= infq*e&‘r d(qu*)-

Proof The necessity of condition (3.17) is trivial.
Now, we show the sufficiency of Theorem 3.2. Given ¢* € 3. By (3.16) in
Lemma 2.3, we obtain

[d(py, ) < (1 4+ U)[d(pyr-1, )] + Ky, Yv>10. (3.18)

o0 o0
Using conditions (ii) — (iv), we have > U, <oo and > K, <oo. From (3.18) and

v=1 v=1

Lemma 2.3 we know that lim [d(p,,,S)]* exists, further, lim d(p,, ¥) exists. From
V—00 V—00

condition (3.17), we obtain

lim d(p,, ) = 0. (3.19)

Next we show that {p,} is a Cauchy sequence in W. Since » .- K, <oo, then
1 4+ p<e’ for all p > 0 and by (3.16) we therefore have

lpy = a*|* < e%[lpv-1 — ¢*|I* + Ky Zno. (3.20)

Thus, given any positive integers v, s > vy, from (3.20) we obtain
*112 Ui * 1|2
||pv+s -9 ” <el ||pv+sfl —dq H + Kers

S er+.\' [erH—l ||pv+s—2 — q*”z —+ Kv+s_]:| + Kv+s
< eUrtstUrsm Hpv+372 - q*Hz + Kv+s71] + Ky

<.
= 521
< e Vp, — | + e U 37 K

i=v+1

2 o0
<llpv—g*IP+1 ) K
i=v+1

00

where { = e2=1 V" < .
Since lim d(p,, ) =0 and lim K, <oo, there exists a positive integer v; > vy
n—o0 V—00

such that for any given € > 0, we have

2 o0 2
2 € €
[d(py, 3)] 3m7 ‘;1[(1';4—? Vv (3.22)

Thus, there exists p; € & such that
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2

2 €
v — <—0, Yv2>v. 3.23
Hp pl” S(C 1) vZvi ( )

It follows that for any v > v, and for all s > 1 we have
[Pvis = 2oll> <2(lpvss — 21l + llpe = p111%)

<21+ 0l =P +20 ) o

i=v+1
62 62
<2-m(1+0+2c-4—c

ie.,

||pv+s _pvll <e.

It follows that the sequence {p,} is Cauchy in W. Since W is complete, one can
assume that p, — g7 € W.
Next, we show that ¢ € 3. Proving by contradiction, we assume that g7 is not in

S = (N, FM) NN, FH)) NN, F(G)) # 0. Since S is a closed subset of
Q, we have that d(g}, <) > 0. Thus, for all ¢g* € 3, we have

lg7 = a*[1 < llg7 — poll + llpy — a1, (3.24)
which implies that
d(q1,9) <llpy — 411l + d(py, ), (3.25)

thus, we have d(g}, ) = 0 as v — oo, which contradicts to d(g}, ) > 0. Hence,
q; € 3. This completes the proof. td

The following results are derived from Theorem 3.2

Corollary 3.3 Let Q be a Banach space and W be a nonempty close convex subset
of Q. Let i€lI=1[1,N]|, where N € N. Let M; : W — W be a finite family of
uniformly L' —Lipschitzian TAP mappings with sequences {a.} C [0,00) and
{bi} C [0,00), where ai, — 0 and b, — 0 as v — oo. Let p, = max{d. :i€l},
&, =max{bi :iecl}. Suppose =, F(M)#0D. Let ¢(r)=max{¢;(r):
i €I}, for each r>0. Assume that there exist K,K* > 0 such that ¢(e) <K*e?
Jor all e>K. Let {p,} be the sequence defined by
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Po €W,

Pv = (1 - mv)pvfl + va']Ei‘)))Wv;

1

L veN, (3.26)
wy, = (1 - tv)pv—l + tvjwi(f,;)zv,
Zy = (1 - Cv)pv + Cvﬂll{gi‘;)pva

where {m,},{t,} and {c,} are real sequences in [0,1] and v= (k — 1)N +1,
i=v(i) €I,k =k(v)>1 is some positive integers and k(v) — oo as v — oc. If the
following assumptions are performed:

0 S m = oo;
v=1

[o.¢]
() Y. m?<oo;
v=1

oo e x
(i) > myp, <oo, 37 myé,<oo;

v=1 v=1

oo
(iv) > myt, <oo;

v=1

V) mt,L*[1 +c,(L—1)]<1,¥v>1, where L = max{L},...,L}.

m?
Then, {p,} converges strongly to a point in < if and only if

liminf d(p,, ) = 0, (3.27)

where d(p, ¥) denotes the distance of p to set S, that is, d(p, ) = inf xcq d(p, q*).
Proof Put M; = H; = G; in Theorem 3.2, then we obtain the desired result. |

Corollary 3.4 Let Q be a Banach space and VW be a nonempty close convex subset
of Q. Let i€I=1[1,N]|, where N € N. Let M; : W — W be a finite family of
uniformly L' —Lipschitzian TAP mappings with sequences {a.} C [0,00) and
{6} C [0,00), where ai, — 0 and b, — 0 as v — oo. Let p, = max{d, :i€l},
¢, =max{b} :iel} Suppose S =N, F(M;) # 0. Let
¢(r) = max{¢,(r) : i € I}, for each r > 0. Assume that there exist K, K* > 0 such
that ¢(e) <K*é* for all e>K. Let {p,} be the sequence defined by

Po € W7

k(v

Pn = (1 - mV)pvfl + va/[,—(E,))WVv veN, (3.28)

wy = (1 =t)py1 + val-liig)Pw

where {m,}, {t,} are real sequences in [0,1] and n = (k — )N +1i, i = v(i) € 1,
k =k(v)>1 is some positive integers and k(v) — oo as n — oo. If the following
assumptions are performed:

@ > m = oo
v=1
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. e 2
i) > m;<oo;

=1

RS voo x

(i) > myp, <oo, 3 myé, <oo;
v=1 v=1

o0
(iv) > myt,<oo;

v=1

v) mtL*<1,Vv>1, where L = max{L} ..., LN}

Then, {p,} converges strongly to a point in < if and only if
liminf d(p,, 3) = 0, (3.29)

where d(p, ¥) denotes the distance of p to set S, that is, d(p, ) = inf xcq d(p, q*).
Proof Put v, = 0 in Corollary 3.3, then we obtain the required result. U

Corollary 3.5 Let Q be a Banach space and W be a nonempty close convex subset
of Q Let i€l=1[1,N]|, where N € N. Let M; : W — W be a finite family of
uniformly L' —Lipschitzian TAP mappings with sequences {a.} C [0,00) and
{61} C [0,00), where al, — 0 and b', — 0 as v — oco. Let p, = max{d’ :i € I}, &,
= max{¥, : i € I}. Suppose S =L, F(M;) # 0. Let ¢(r) = max{¢,(r):ic I},
for each r>0. Assume that there exist K,K* > 0 such that ¢(e) <K*e* for all
e>K. Let {p,} be the sequence defined by

P W, N (3.3
y veN, 30
pn=(1—m)py1 + va,-lz(v))Pvfl, )

where {m,} is a real sequence in [0,1] and v=(k— )N +1i, i=v(i) €l, k=
k(v)>1 is some positive integers and k(v) — oo as n — oco. If the following
assumptions are performed:

. oo
i) > my=o0;
v=1
.o S 2
(ii) Zl ;< 00;
-

“ee > 0
(i) > myp, <00, > myé, <oo.

n=1 v=1

Then, {p,} converges strongly to a point in < if and only if
liminf d(p,,3) = 0, (3.31)

where d(p, 3) denotes the distance of p to set S, that is, d(p, ) = infxcq d(p, q*).

Proof Put ¢, = 0 in Corollary 3.4, then we obtain the required result. O
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Corollary 3.6 Let Q be a Banach space and WV be a nonempty close convex subset
of Q. Let i€lI=1[1,N]|, where N € N. Let M; : W — W be a finite family of
uniformly L —Lipschitzian TAP mappings with sequences {al} C [0,00) and
{61} C [0,00), where @', — 0 and b, — 0 as v — oo, H;: W — W be a finite
Jamily of uniformly L\—Lipschitzian TAP mappings with sequences {f'} C [0, 00)
and {d'} C [0,00), where f — 0 and d’ — 0 as v — oo. Let u, = max{a,,f,},
where a, = max{a’ :i € I} and f, = max{f! : i € I}. Let ¢, = max{b,,d,}, where
by=max{b :icl} and d,=max{d :iecl}. Suppose = (N, F(M))
NN, F(H:)) # 0. Let $(r) = max{¢;(r) : i € I}, for each r>0. Assume that
there exist K, K* > 0 such that ¢(e) <K*eé* for all e>K. Let {p,} be the sequence
defined by

po €W,

k(v
DPv = (1 - mv)pnfl + mvjwi(i))ww neN, (332)
Wy = (l - Z‘v)pvfl + lvf]l«lzi‘;)pw
where {m,} and {#,} are real sequences in [0,1] and v = (k — 1)N +i,i =v(i) € I,
k =k(v)>1 is some positive integers and k(v) — oo as v — oo. If the following
assumptions are performed:

oo

@ > m,=o0;
v=l1
00

(ii) 2:1 m2 < oo,
=

“ee > >

(i) 30 mop, <00, 3 myéy<oo;
v=1 v=1

o0
(iv) D myt,<oo;

v=1
v) mt,L*<1,Vv>1, where L =max{L},...,LN Ll .. LN}.
Then, {p,} converges strongly to a point in < if and only if

liminf d(p,, ) = 0, (3.33)

V—00
where d(p, ) denotes the distance of p to set S, i.e., d(p,S) = inf xcq d(p, q*).
Proof Put ¢, = 0 in Theorem (), then we obtain the needed result. U

These are just but a few of the numerous results that can be obtain from
Theorem 3.2
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4 Conclusion

In this manuscript, we have studied the class of TAP mappings which is known to be
superclass of the classes of nonexpansive mappings and classes pseudocontractive
mappings which have been studied in [25-27, 29, 33, 36]. Moreover, since our new
iterative method contains those studied in [25-27, 29, 33, 36], it follows that our
results improve, complement, generalize and extend the corresponding results in [25—
27, 29, 33, 36] and many other prominent results in the current literature.

Availability of data and material The data used to support the findings of this study are included within the
article.
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