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ABSTRACT 

An alternative procedure to the technique of David, Asiribo and Dikko (2018; 2019) for 

estimating the parameters of a non-linear split-plot model was proposed in this study. David, 

Asiribo and Dikko (2018; 2019) – whose study advanced the work of Marcia and John (1990) 

on the remodeling of split-plot models to non-linear forms, proposed the combined 

implementation of the EGLS (Estimated Generalized Least Squares) and then MLE 

(Maximum Likelihood Estimation) techniques for estimating the parameters of the nonlinear 

split-plot design model. Here, the techniques of EGLS and MLE were used, respectively, to 

estimate the parameters in the mean function and variance components of the non-linear 

split-plot model. However, since the latter technique as used by the authors proved inefficient 

for implementing further analyses especially as the estimates obtained were biased 

downwards, this study therefore proposed a three-step routine to bypass this pitfall. The first 

step in the thesis was to transform the non-linear split-plot model to a probability density 

function via established theorems, following which an MLE routine (which replaces the 

EGLS technique) is implemented on the obtained density function in order to obtain 

estimates of parameters in the mean function part of the non-linear split-plot model. 

Thereafter, and lastly, the MLE was used on a variant of the density function in order to 

obtain estimates of the variance components of the non-linear split-plot model in contrast to 

approach of MLE used prior to this study. Findings of the study have shown this proposed 

routine to be a better choice at bypassing the deficiency of the existing routine to an extent; 

and, hence, justifying the need for a more detailed comparison to be made as we have 

recommended. 
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1.0 INTRODUCTION 

An important requirement for making fast 

and reliable progress in many branches of 

today’s society is the efficient use of 

experimental design methodology (Bruce, 

2018; Montgomery, 2013; Naes, Aastveit & 

Sahni, 2007). Popular amongst the most 

frequently used types of experimental 

designs, are the factorial designs and 

fractional factorial designs. Experimenters 

use these two popular design types because 

they are simple and generally straightforward 

to generate and analyze, and can be used in a 

number of different situations. However, in 

some multifactor experiments, an 

experimenter may often encounter cases in 

which he is unable to completely randomize 

the order of the experimental runs. In such 

cases, the basic requirements of 

randomization and blocking of experimental 

runs are usually difficult to satisfy due to 

either economic or practical reasons (Bradley 

& Christopher, 2009). Circumstances of this 

nature often prompt a generalization of the 

factorial design or fractional factorial design 

(Montgomery, 2013). This generalization is 

only feasible with the application of various 

restrictions imposed on the structure of the 

factorial design or fractional factorial design; 

hence, resulting in data with more complex 
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error structure than that of the completely 

randomized designs (CRD).  

 

One of the most important and frequently 

used design strategies prompted by such 

generalization is the “split-plot design 

(SPD)”, which has recently received much 

attention in the literature of Bruce (2018), 

Montgomery (2013), Oehlert (2010), Bradley 

and Christopher (2009), Naes, Aastveit and 

Sahni (2007), Cox and Reid (2000), Cochran 

and Cox (1992), etc. 

 

Recent advancements in the study of the 

SPDs have focused on the study of split-plot 

design models, which are defined to be a 

special class of linear models with two error 

terms being the whole plot and subplot error 

terms (Marcia & John, 1990; Johannes, 2010; 

Toth, 2011; David, Asiribo & Dikko, 2019). 

In particular, Marcia and John (1990) have 

shown the possibility of remodelling the 

split-plot design models in nonlinear forms 

containing variance components. Such forms 

consist of a combination of nonlinear model 

for the mean part of the split-plot design 

model – being additive error terms which 

describe the covariance configuration of the 

models. This study of Marcia and John 

(1990) was advanced by the independent 

studies of David, Asiribo and Dikko (2018; 

2019) who respectively used the estimated 

generalized least squares (EGLS) and 

maximum likelihood estimation (MLE) in 

estimating parameters of nonlinear split-plot 

design models.  

 

Sadly, nonlinear modelling of split-plot 

designs has indeed attracted little interest 

mainly in estimation of parameters, even 

though the available procedures for 

estimating parameters of the nonlinear split-

plot model are similar, in some ways, to that 

used in estimating the parameters for 

nonlinear regression. In particular, only two 

recent attempts have been made in succession 

by David, Asiribo and Dikko (2018, 2019) at 

estimating parameters of the nonlinear split-

plot design model as proposed by Gumpertz 

and Rawlings (1992) who continued the 

study of Marcia and John (1990) on the 

possibility of remodelling the split-plot 

design models in nonlinear forms with 

variance components. In all attempts, the 

authors used ANOVA and minimum 

variance quadratic unbiased estimation 

(MIVQUE) for estimating the model 

variance-covariances. They also used 

maximum likelihood estimation (MLE) 

technique for estimating the variance 

components, but could not make further 

analyses with it because the MLE estimates 

were biased downwards. In lieu of the 

foregoing pitfall, this study was an attempt at 

proffering an alternative to the EGLS-MLE 

technique of parameter estimation for 

nonlinear SPD models as tendencies abound 

that certain interesting theoretical and 

practical results could emerge. 

 

2.0 LITERATURE REVIEW 

 

2.1 Definitions, relevance and applications 

of the split-plot design 

Split-plot designs were originally developed 

by Sir Ronald Aylmer Fisher in 1925 for use 

in agricultural experiments. Split-plot 

designs are blocked experiments in which the 

blocks themselves serve as experimental 

units for a subset of the factors. Thus, there 

are two levels of experimental units. The 

blocks are referred to as whole plots while the 

experimental units within the blocks are 

called subplots (or split-plots, or split-units). 

Corresponding to these two levels of 

experimental units, are two levels of 

randomization; the first randomization 

process is conducted to determine the 

assignment of block-level treatments to 

whole plots, while the other randomization 

which assigns treatments to split-plot 

experimental units occur within each block or 

whole plot. 

 

The split-plot design (Montgomery, 2013), is 

a generalization that results from the inability 

to completely randomize the order of the runs 

in some multifactor experiments. Lukas 

(2014) defined the split-plot design as a 

special case of a factorial treatment structure 
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which is used when some factors are harder 

(or more expensive) to vary than others; 

hence, it is one which consists of two (2) 

experiments with different experimental 

units of different size. This may explain one 

of the reasons why a split-plot design was 

described by David, Asiribo and Dikko 

(2019) as a design which results from a two-

stage randomization of a factorial treatment 

structure. Notwithstanding, Bruce (2018) 

earlier described it as one in which the levels 

of one or more experimental factors are held 

constant for a batch of several consecutive 

experimental runs called a whole plot. 

 

Naes, Aastveit and Sahni (2007) have 

emphasized that the use of the factorial or 

fractional factorial experiments may impose 

extra challenges on the experimenter, both 

when designing the experiment, and when 

analyzing data (in non-replicated cases); but 

with split-plot designs, these practical 

limitations can be overcome in relation to 

cost. David, Asiribo and Dikko (2019) have 

stressed that a variety of the split-plot design 

forms can be used for reconstructing factorial 

designs, fractional factorial designs, response 

surface designs (having quadratic and higher-

order surfaces), optimal designs (of the first 

and second orders), as well as the sequential 

and mixture designs. 

 

Chang-Yun (2016) proposed a new method 

for constructing optimal split-plot designs 

that are robust for model misspecification. 

The author provided a general form of the 

loss function used for the D-optimal minimax 

criterion and applied it to searching for robust 

split-plot designs. To more efficiently 

construct designs, the author developed an 

algorithm which combines the anneal 

algorithm and point-exchange algorithm. 

Hence, the author modified the update 

formulas for calculating the determinant and 

inverse of the updated matrix and applied 

them to increasing the comparing speed for 

his developed program. Anqi (2016) 

investigated two different approaches, 

Neymanian randomization-based method 

and the Bayesian model-based method, 

towards the causal inference for 22  split-plot 

designs, both under the potential outcome 

framework. 

 

Luis (2015) provided practical strategies to 

help practitioners in dealing with the 

challenges presented by second-order block 

split-plot design, including an end-to-end, 

innovative approach for the construction of a 

new form of effective and efficient response 

surface deign referred to as second-order sub-

array Cartesian product split-plot design. 

This new form of design was an alternative to 

the ineffective split-plot designs that were 

then in use by the manufacturing/quality 

control community. The design was 

economical, the prediction variance of the 

regression coefficients was low and stable, 

and the aliasing between the terms in the 

model and effects that were not in the model, 

as well as the correlation between similar 

effects that were not in the model, was low. 

Based on an assessment using well-accepted 

key design evaluation criterion, it was 

demonstrated that second-order sub-array 

Cartesian product split-plot designs perform 

as well or better than historical designs that 

have been considered standards up to this 

point. 

 

Vahide and Rajael (2015) studied the factors 

affecting liquidity accepted in stock 

exchange Agricultural Machinery companies 

using a Split-Plot design model. In their study 

they considered all five Agricultural 

Machinery Companies that were accepted in 

Tehran Stock Exchange since (1388-1390). 

Their study adopted a descriptive research 

based on the target application. In this model 

 ij  is still the whole plot error but the 

blocks B  and blocks AB  interactions 

were essentially pooled with 
ijk  to form the 

subplot error. Based on the results, it was 

observed that ratio type and company type, 

and interactions ratio type and company type, 

affected the company’s liquidity. 

 

Oluwole, Amahia and Fakorede (2014) 

studied design effects for the maximum 
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likelihood estimators of variance components 

in a split-plot design. Their study used the 

general linear model with one whole plot 

factor and one sub-plot factor and assumed 

that both factor effects are random variables. 

The main problem studied is how to assign a 

given number of whole plots with equal sizes 

to the level of the whole plot factor in a way 

that will form a balanced one-way design. 

Their study introduced a method of 

classifying the 5 variance components to 

make comparison and presentation 

meaningful. The resulting optimal designs 

depended on the true proportional value of 

the variance components. 

 

The objective of a tutorial paper by Johannes 

(2010) was to review split-plot designs for 

full and fractional factorial experiments, and 

to explain why they often arise in industrial 

experiments, and provide several illustrative 

examples. 

 

Beasley and Bruno (2009) reviewed three 

aligned rank methods for transforming data 

from multiple group repeated measures 

(otherwise, split-plot) designs. Univariate 

and multivariate statistics for testing the 

interaction in split-plot designs were 

elaborated. Computational examples were 

used to provide a context for performing 

these ranking procedures and statistical tests. 

 

2.2 Linear and non-linear split-plot models 

In Montgomery (2013), the linear model for 

a split-plot design with main treatment A  and 

sub-treatment B  is one in which i , j , and 

 ij  represent the whole plot and 

correspond, respectively, to replicates, main 

treatments (factor A ), and WPE (replicates 

A ); and k ,  ik ,   jk  and  ijk  

represent the subplot and correspond, 

respectively, to the sub-plot treatment (factor 
B ), the replicates B   and AB  interactions, 

and the SPE (replicate AB ). Note that WPE 

is the replicates A  interaction and the SPE 

is the three-factor interaction replicates AB

. The sums of squares for these factors are 

computed as in the three-way analysis of 

variance without replication. 

 

According to David, Asiribo and Dikko 

(2019), the nonlinear split-plot model which 

has WPE and SPE is a special case of a 

nonlinear model with random effects (that is, 

nonlinear model with variance components 

WPE and SPE). The assumptions are given as 

follows. 

 

Assumption 1: 

It is presumed that the WPE and SPE are 

random effects. Also, it is presumed that 

 2,0~ wp
iid

ij Nw   and  2,0~ sp
iid

ijk N  . 

 

Assumption 2: 

 Let ̂  be the parameter estimate of   for the 

model which follows an asymptotic normal 

distribution with mean   and variance 

  12 
FF , where F  is the un  matrix with 

elements     ,ijkxf  which has full 

column rank, u . This implies that the 

estimated response 0ŷ  follows an asymptotic 

normal distribution with mean 0y  and 

variance-covariance (VC) matrix of the 

reaction vector. 

 

Assumption 3: 

If the parameters in the mean function, 

 ,ijkxf  is 1p  and r  is the number of 

random effects, then n  which is the number 

of observations in the data set must be greater 

than or equal to 1 rp  for all parameters 

to be estimated. This implies that 

1 rpn . 

 

3.0 RESEARCH METHODOLOGY 

Here, we have presented the procedure of 

EGLS (for estimating the parameters in the 

mean function component of the non-linear 

split-plot model), the variance component 

estimation by REML, needed concepts in the 

proposed alternative, and the procedure for 

implementing the proposed alternative. 
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3.1 Estimated generalized least squares (EGLS) estimation technique 

When the covariance matrix of y  is known then the GLS estimator, GLS̂ , is found by 

minimizing the objective function 

(𝑦 − 𝑓(𝑋; 𝜃))
′
𝑽−1(𝑦 − 𝑓(𝑋; 𝜃))                                                                       (1) 

with respect to  ; where V  is a known positive definite (non-singular) covariance matrix 

which arises from the model: 

𝑦𝑖𝑗𝑘𝑙 = 𝑓(𝑥𝑖𝑗𝑘𝑙 , 𝜃) + 𝑤𝑖𝑗𝑘 + 𝜀𝑖𝑗𝑘𝑙                                                                            (2) 

where,   0ijkwE ,  
NI

2cov wijkw  ,   0ijklE   and  NI
2cov  . 

Let the variance-covariance matrix of the observations  yvar  be written as 

I

II NN

2

22



 



 wV
 

Using Cholesky decomposition, the inverse of a positive definite matrix Z  (non-singular 

matrix) is positive definite with Cholesky factorization if t
LLZ  , where L  is invertible (its 

diagonal elements are nonzero) then the right and left inverses of Z  are as follows. 

Right inverse of Z  is 1
LLT
 t  such that ILLLLLLZT

11  tt  

Right inverse of Z  is 1
LLT
 t  such that ILLLLLLZT

1   tttt  

 

Hence, Z  is invertible as 1
LLZ
  t1  and t

LLT 1 . 

Multiplying model (2) by 
1

L  on both sides yield that 

 

𝑳−1𝑦𝑖𝑗𝑘 = 𝑳
−1𝑓(𝑥𝑖𝑗𝑘 , 𝜃) + 𝑳

−1𝑤𝑖𝑗 + 𝑳
−1𝜀𝑖𝑗𝑘                                                                 (3) 

 

Let 
t

LLTI  1
 then the Cholesky factorization of the error variance is as follows. 

         t

ijk

t

ijkl

t

ijkijkl ww   LLLLLL covcovcovcov 111   

    
ijijk

t wcovcov1   LL
 

  t LIL
21 

 
tt  LLLL

12
 

I
2

 
 

Define ijkijk y1 LT ,     ,, 1

ijkijk xfx   LM  and    
ijkijijk w 11   LL  

Then equation (3) becomes 

 

𝑻𝑖𝑗𝑘 = 𝑴(𝑥𝑖𝑗𝑘𝑙 , 𝜃
∗) + 𝛺𝑖𝑗𝑘                                                                                                      (4) 

where,   0ijkE  and   IV
2ijk . Thus the GLS model has been transformed to an OLS 

model. Hence, model (4) is to be solved using the OLS technique as follows. Taking the 

summation of both sides of (4) and squaring we have 

 

∑∑∑𝛺𝑖𝑗𝑘
2

𝑏

𝑘

𝑎

𝑗

𝑠

𝑖

=∑∑∑{𝑻𝑖𝑗𝑘 −𝑴(𝑥𝑖𝑗𝑘𝑙 , 𝜃
∗)}

2
𝑏

𝑘

𝑎

𝑗

𝑠

𝑖

                                                           (5) 
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Let     
 

s

i

a

j

b

k

ijklijk

s

i

a

j

b

k

ijk xL
22 , MT  

Minimize  L  w.r.t.  , equate to zero and divide both sides by 2  we have, 

 

𝜕𝐿(𝜃∗)

𝜕𝜃ℎ
∗ =∑∑∑{𝑻𝑖𝑗𝑘 −𝑴(𝑥𝑖𝑗𝑘𝑙 , 𝜃

∗)}

𝑏

𝑘

×

𝑎

𝑗

𝑠

𝑖

{
𝜕𝑀(𝑥𝑖𝑗𝑘, 𝜃

∗)

𝜕𝜃ℎ
∗ }

𝜃∗=𝜃̂∗

                              (6) 

 

At this point, equation (6) has no closed form, and hence will be solved iteratively using the 

Gauss-Newton method via Taylor series expansion of  ,ijklxM  at first order. Note that the 

Taylor series expansion is given as 

 

𝑓(𝑥) = 𝑓(𝑎) + (𝑥 − 𝑎)𝑓′(𝑎) +
(𝑥 − 𝑎)2

2!
𝑓″(𝑎) +⋯+

(𝑥 − 𝑎)ℎ

ℎ!
𝑓(ℎ)(𝑎) + 𝑅ℎ+1        (7) 

Therefore, we have  

𝑴(𝑥𝑖𝑗𝑘, 𝜃
∗) = 𝑴(𝑥𝑖𝑗𝑘 , 𝜃0

∗) + (𝜃1
∗ − 𝜃10

∗ )
𝜕𝑴(𝑥𝑖𝑗𝑘 , 𝜃

∗)

𝜕𝜃1
∗ |

𝜃∗=𝜃0
∗

+ (𝜃2
∗ − 𝜃20

∗ )
𝜕𝑴(𝑥𝑖𝑗𝑘, 𝜃

∗)

𝜕𝜃2
∗ |

𝜃∗=𝜃0
∗

+⋯ 

     +(𝜃ℎ
∗ − 𝜃ℎ0

∗ )
𝜕𝑴(𝑥𝑖𝑗𝑘, 𝜃

∗)

𝜕𝜃ℎ
∗ |

𝜃∗=𝜃0
∗

                                                              (8) 

L et      ,ijklxM  and 
 

0
ˆ

,


















h

ijk

ijkl

x
d

M
 for all N  cases and   0  then (8) 

becomes 

𝜂(𝜃∗) = 𝜂(𝜃0
∗) + 𝐷0𝛿                                                                                               (9) 

where 0D  is the HN  derivative matrix with elements  
hijkd   and this is comparable to 

approximating the residuals for the model, that is,       T  by 

     00 D 
T  

     00 D 
T  

𝛺(𝜃∗) = 𝒛0 − 𝐷0𝛿                                                                                                    (10) 

where   00 Tz  and   0 . 

 

The Householder (1958) QR decomposition 

is applied to (26), as a result of its numerical 

stability characteristics for estimating the 

model parameters. This is done to decompose 

0D  into a product of an orthogonal matrix 

and an inverted matrix. 

 

Theorem 1: 

Suppose A  is a full column rank matrix of 

yx , then A  can be written as QRA   

where Q  is a matrix of yx  whose column 

vectors create orthonormal basis for the 

column space of A  while R  is an yy  

invertible upper triangular matrix. 

Proof: 

Let an yx  matrix have columns 
ywww ,,, 21   vectors. 

Also, let 
xyn qqqqq ,,,,,, 121  
 be orthonormal vectors such that 
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jiifqqq j

t

ii  0,1  

Then Q  is nm  with orthonormal columns such that, IQQ t . 

If A  is a squared matrix  yx  , then Q  is orthonormal, that is, IQQQQ  tt , hence, iq  

is orthonormal to 
ywww ,,, 21  . 

Therefore, 

𝑤1 = (𝑤1 ⋅ 𝑞1)𝑞1 
𝑤2 = (𝑤2 ⋅ 𝑞1)𝑞1 + (𝑤2 ⋅ 𝑞2)𝑞2 
⋯ 
𝑤𝑦 = (𝑤𝑦 ⋅ 𝑞1)𝑞1 + (𝑤𝑦 ⋅ 𝑞2)𝑞2 +⋯+ (𝑤𝑦 ⋅ 𝑞𝑦)𝑞𝑦                                                  (11) 

This implies that QRA   

(𝑤1 𝑤2  ⋯ 𝑤𝑦) = (𝑞1 𝑞2  ⋯ 𝑞𝑦)

(

 
 

(𝑤1 ⋅ 𝑞1) (𝑤1 ⋅ 𝑞2) ⋯ (𝑤1 ⋅ 𝑞𝑦)

0 (𝑤2 ⋅ 𝑞2) ⋯ (𝑤2 ⋅ 𝑞𝑦)

⋮ ⋮ ⋮ ⋮
0 0 ⋯ (𝑤𝑘 ⋅ 𝑞𝑘))

 
 
              (12) 

Let  
ywww 21A  and jjij qw R  therefore, equation (12) is written as 

𝑨 = (𝑞1 𝑞2  ⋯ 𝑞𝑦) 

(

 

𝑹11 𝑹12 ⋯ 𝑹1𝑦
0 𝑹22 ⋯ 𝑹2𝑦
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑹𝑦𝑦)

                                                      (13) 

 

Equation (13) shows that R  is yy  upper 

triangular with nonzero diagonal elements 

and R  is non-singular (since the diagonal 

elements are nonzero. This means QRA  . 

 

Theorem 2: 

If A  is an np  matrix with full column 

rank, and if QRA  , a QR  decomposition 

of A , then the normal system for bAx   can 

be expressed as bQRx   and the least 

squares solution is bQRx
t1ˆ  . 

 

Proof: 

Let   bAAAx
tt 1

ˆ


  be the best approximate 

solution to bAx  . Based on the 

orthonormal and orthogonal property 

exhibited by QR  decomposition, if QRA   

then ttt
QRA  . 

Therefore,

 

    bQRQRQRbAAAx
tttttt 11

ˆ


  

bQRxQRQR
tttt  ˆ  

bQRxRR
ttt  ˆ  

Since 1QQ
t  

𝒙̂ = 𝑹−1𝑸𝑡𝒃                                                                                                                 (14) 
 

Based on the two stated and proved theorems on QR -decomposition, the decomposition of 

0D  is presented as follows. 

 

Let QR0D . Where Q  is a matrix of NN  and orthogonal, IQQQQ  tt  while R  is a 

HN  triangular matrix and under the major diagonal R  is zero. Writing Q  and R  as follows, 



E. M. Egomo et al.: Alternative Technique for Parameter Estimation of Non-Linear Split-Plot Model 

60 
 

 21 | QQQ   

where 
1Q  is the first H  columns and 

2Q  is the last HN   columns of Q , and 











2

1

R

R
R  

with 1R  a HH  upper triangular matrix with all elements greater than zero and 
2R  is a 

  HHN   lower matrix of zeros. Also, 
















t

t
t

2

1

Q

Q
Q  

where t

1Q  and t

2Q  are of dimension NH  and   HHN   respectively. Therefore, 

𝐷0 = 𝑸𝑹 = 𝑸1𝑹1                                                                                                           (15) 
 

Geometrically, the columns of Q  define an 

orthonormal, or orthogonal, basis for the 

response space based on the property that the 

H  columns cover the expectation plane. 

Projection onto the expectation plane is 

simple if the projection is in the coordinate 

system given by Q . 

Next, is transformation of the response 

vector, which is 

𝒈 = 𝑸𝑡𝒛0                                                                                                                          (16) 
with components 

𝒈1 = 𝑸1
𝑡𝒛0                                                                                                                       (17) 

and 

𝒈2 = 𝑸2
𝑡𝒛0                                                                                                                       (18) 

 

The properties of g  onto the expectation plane is simply given as 










0

g t
 

in Q  coordinates and 

𝜂̂𝑡 = 𝑸(
𝒈𝑡
𝟎
) = 𝑸𝑡𝒈𝑡                                                                                                   (19) 

in the original coordinates. So, 

tt gR
1

0

  

this implies 

𝑹𝑡𝛿0 = 𝒈𝑡                                                                                                                  (20) 
 

Equation (20) can be estimated using 

backward solving. The point 

   0011
ˆ     should now be 

closer to y  than  0 , and then move to 

better parameter value 001     and 

carryout another iteration by calculating new 

residuals   1Tz t
, a new derivative 

matrix 0D , and a new increase. Repetition of 

the process is done until convergence is 

obtained, that is, until the increment is so 

small with no useful change in the elements 

of the parameter vector. 

 

It is expected that the new residual sum of 

squares (RSS) should be less than the initial 

estimate but if otherwise, a small step in the 

direction 0  is introduced. A step factor   is 

introduced such as 001     where   is 

chosen to ensure that the new RSS is less than 

the initial estimate. A common method 

begins with 1  and reduces it by half until 
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it is satisfied that the new RSS is less than the 

initial estimate. 

 

In actual practice the GLS is impracticable 

because in the VC  matrix, V  is unknown. 

Therefore, an estimated V  is obtained and 

substituted into equation (1) and the term 

EGLS is used. Different techniques for 

estimating the variance components to 

substitute for V  in equation (1) are available. 

David, Asiribo and Dikko (2018) used the 

technique of REML (Residual Maximum 

Likelihood) presented in section 3.2 below.  

 

3.2 Variance component estimation 
It is known that REML procedure does not 

involve ̂   in the estimation of the variance 

component. The function of the likelihood is 

based on vectors in the error space, that is, on 

linear combinations of y  which have 

expectation to be zero rather than y  itself. To 

obtain these vectors in the error space the 

linear approximation of the residuals is used 

  00 Dz  as shown in (10). 

To estimate the variance components from 

the nonlinear functions of y  that would not 

involve ̂ , vectors of the form yt
k  are 

formed whereby k  is selected so that 

00 Dt
k  which falls in the linear estimate to 

the error space. yt
k  is called the error 

contrasts, that is, the part of the data that is 

orthogonal to the fixed effects (not dependent 

on the values of the fixed effect estimates), k  

is a vector from a full rank matrix K  and 

maximizing the likelihood on yt
K , the 

function of the log likelihood on yt
K , is 

𝑙𝑛 𝐿 (𝜣) = −
𝑛

2
𝑙𝑛(2𝜋) −

1

2
𝑙𝑛|𝑲𝑡𝑽𝑲| −

1

2
(𝑲𝑡𝑦 −𝑲𝑡𝑓(𝑋, 𝜃))

𝑡
 

   × (𝑲𝑡𝑽𝑲)−1(𝑲𝑡𝑦 − 𝑲𝑡𝑓(𝑋, 𝜃))                                                                (21) 

where 










 222 , SPWP Θ  is then approximated by the surface and letting Lln to be Γ  

equation (21) becomes, 

            ,,
2

1
ln

2

1
2ln

2

1
xfyxfy

n ttttttt
KKKVKKKKVKΘΓ 


 

        11
,,

2

1
ln

2

1 
 KVKKKVKKKKKVKC

tttttttt xfyxfy   

= 𝑪−
1

2
𝑙𝑛|𝑲𝑡𝑽𝑲| −

1

2
((𝑲𝑡𝑦 −𝑲𝑡𝑓(𝑥, 𝜃))

𝑡
𝑲𝑡𝑦(𝑲𝑡𝑽𝑲)−1) 

 + ((𝑲𝑡𝑦 − 𝑲𝑡𝑓(𝑥, 𝜃))
𝑡
𝑲𝑡𝑓(𝑥, 𝜃)(𝑲′𝑽𝑲)−1)                                            (22) 

The third and fourth terms of equation (22) can be expressed respectively as follows. 

           11
,

2

1
,

2

1 
 KVKKKKKVKKKK yxfyyxfy tttttttt   

=
1

2
(𝑦𝑡𝑲𝑡(𝑲𝑡𝑽𝑲)−1𝑦𝑲 − 𝑓(𝑥, 𝜃)𝑡𝑲𝑡(𝑲𝑡𝑽𝑲)−1𝑦𝑲)                                   (23) 

 

and 

             11
,,

2

1
,,

2

1 
 KVKKKKKVKKKK  xfxfyxfxfy tttttttt  

=
1

2
(𝑦𝑡𝑲𝑡(𝑲𝑡𝑽𝑲)−1𝑓(𝑥, 𝜃)𝑲 − 𝑓(𝑥, 𝜃)𝑡𝑲𝑡(𝑲𝑡𝑽𝑲)−1𝑓(𝑥, 𝜃)𝑲)                 (24) 

respectively. Therefore, equation (22) becomes 

𝛤(𝛩) = 𝐶 −
1

2
𝑙𝑛|𝑲𝑡𝑽𝑲| −

1

2
(𝑦𝑡𝑲𝑡(𝑲𝑡𝑽𝑲)−1𝑦𝑲 − 𝑓(𝑥, 𝜃)𝑡𝑲𝑡(𝑲′𝑽𝑲)−1𝑦𝑲) 

   +
1

2
(𝑦𝑡𝑲𝑡(𝑲𝑡𝑽𝑲)−1𝑓(𝑥, 𝜃)𝑲 − 𝑓(𝑥, 𝜃)𝑡𝑲𝑡(𝑲′𝑽𝑲)−1𝑓(𝑥, 𝜃)𝑲)      (25) 
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



2

0

22

i

tt

iii KIIKIV   and 1
VV  can be expressed as given below. 

       
jh

tttt
VQKKVKKVKVKKVKVV

2111 


 

Inserting V  into equation (25) we have 

𝜞(𝜣) = 𝑪 −
1

2
𝑙𝑛 |𝑲𝑡∑𝜎𝑖

2𝑰𝑖𝑰𝑖
𝑡𝑲

2

𝑖=0

| 

   −
1

2
(𝑦𝑡𝑲𝑡 (𝑲𝑡∑𝜎𝑖

2𝑰𝑖𝑰𝑖
𝑡𝑲

2

𝑖=0

)

−1

𝑦𝑲 − 𝑓(𝑥, 𝜃)𝑡𝑲𝑡 (𝑲𝑡∑𝜎𝑖
2𝑰𝑖𝑰𝑖

𝑡𝑲

2

𝑖=0

)

−1

𝑦𝑲) 

   +
1

2
(𝑦𝑡𝑲𝑡 (𝑲𝑡∑𝜎𝑖

2𝑰𝑖𝑰𝑖
𝑡𝑲

2

𝑖=0

)

−1

𝑓(𝑥, 𝜃)𝑲

− 𝑓(𝑥, 𝜃)𝑡𝑲𝑡 (𝑲𝑡∑𝜎𝑖
2𝑰𝑖𝑰𝑖

𝑡𝑲

2

𝑖=0

)

−1

𝑓(𝑥, 𝜃)𝑲)                                     (26) 

 

Differentiate partially equation (26) w.r.t. 2

i  and equate to zero. By transformation all other 

terms in the equation becomes zero since     0,,0 
ttt xfxfD  KKK . Hence, we have 

𝜕𝜞(𝜣)

𝜕𝜎𝑖
2 = −

1

2

1

|𝑲𝑡 ∑ 𝜎𝑖
2𝑰𝑖𝑰𝑖

𝑡𝑲2
𝑖=0 |

(𝑲𝑡𝑰𝑖𝑰𝑖
𝑡𝑲) 

    +
1

2
𝑦𝑡𝑲𝑡 (𝑲𝑡∑𝜎𝑖

2𝑰𝑖𝑰𝑖
𝑡𝑲

2

𝑖=0

)

−1

(𝑲𝑡𝑰𝑖𝑰𝑖
𝑡𝑲)(𝑲𝑡∑𝜎𝑖

2𝑰𝑖𝑰𝑖
𝑡𝑲

2

𝑖=0

)

−1

𝑦𝑲   (27) 

    KKIIKKIIKKIIKKKIIK

KIIK

yy
i

t

iii

tt

ii

t

i

t

iii

tttt

ii

t

i

t

iii

t

1
2

0

2

1
2

0

2

2

0

2 2

11

2

1























































 

Let KKIIKKQ

1
2

0

2













 

i

t

iii

tt

h   the equation (26) becomes 

1

2
(𝑡𝑟(𝑸ℎ𝑽𝑖)) =

1

2
(𝑦𝑡𝑸ℎ𝑽𝑖𝑸ℎ𝑦)                                                                                 (28) 

 

Multiply the left hand side of equation (28) by 1
VV  we have 

1

2
(𝑡𝑟(𝑸ℎ𝑽𝑖))𝜎𝑗(ℎ+1)

2 (𝑸ℎ𝑽𝑗) =
1

2
(𝑦𝑡𝑸ℎ𝑽𝑖𝑸ℎ𝑦)                                                     (29) 

⟨𝑡𝑟(𝑸̂(ℎ)𝑽̂𝑖𝑸̂(ℎ)𝑽̂𝑗)⟩ × ⟨(𝜎̂𝑗(ℎ+1)
2 )⟩ = ⟨(𝑦𝑡𝑸̂(ℎ)𝑽̂𝑖𝑸̂(ℎ)𝑦)⟩                                         (30) 

⟨(𝜎̂𝑗(ℎ+1)
2 )⟩ = ⟨𝑡𝑟(𝑸̂(ℎ)𝑽̂𝑖𝑸̂(ℎ)𝑽̂𝑗)⟩

−1
× ⟨(𝑦𝑡𝑸̂(ℎ)𝑽̂𝑖𝑸̂(ℎ)𝑦)⟩                                  (31) 

 

The solutions to be equations might be negative when more iteration does not improve the log 

likelihood. In such a case, the negative value is returned to zero afore the next iteration. 
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3.3 Kronecker product 

Let  
ijaA  and  

ijbB  be nm  and qp  matrices, respectively. Then the Kronecker 

product 

 BBA ija  

is an nqmp  matrix expressible as a partitioned matrix with Ba ij  as the  thji,  partition, 

mi ,,1  and nj ,,1 . 

 

The following results are consequences of the definition above: 

(i) 00AA0   

(ii)      BABABAA  2121  

(iii)      2121 BABABBA   

(iv) BABA  abba  

(v)   22112121 BABABBAA   

(vi)   111 
 BABA , if the inverses exist. 

(vii)   
 BABA , using any g -inverses. 

(viii)   BABA 


  

(ix)    1BABA   11   

 

3.4 Hadamard product 

If  
ijaA  and  

ijbB  be each nm  matrices, then their Hadamard product is the nm  

matrix of element-wise products  
ijijbaBA . 

We have the following results involving Hadamard products: 

(i) 00A   

(ii) AeeAeeA   

(iii) ABBA   

(iv)   CBCACBA   

(v)    eBAeAB tr  

 

3.5 The Khari-Rao product 

Let  kAAA 1  and  kBBB 1  be two partitioned matrices with the same number 

of partitions. Khari and Rao, in 1968, defined a new product: 

   kk BABABA  11  

where   denotes the Kronecker product. It is easy to verify, among several properties, that: 

(i)    CBACBA   

(ii)    BTATBATT 2121   

 

3.6 Matrix exponential 

Matrix exponential is mathematically defined 

as a matrix function on matrices analogous to 

the ordinary exponential function. It is mostly 

used to solve systems of linear differential 

equations. For an nm  real or complex 

matrix A , the exponential of A , denoted by 

Ae  or  Aexp , is the nm  matrix given by 

the power series: 





u

u

u

u
e

0 !

1
A

A  

where 
0

A  is defined as the identity matrix I  

with the same dimensions as A . The above 
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series always converges, so the exponential 

of A  is well-defined. 

 

3.7 Maximum likelihood estimation 

Let X  be a random sample with probability 

density function  ;xf . Then the likelihood 

function is defined as: 

   



n

i

ixfxl
1

;;   

Let X  be a random sample with probability 

density function  ;xf . Then the maximum 

likelihood estimate (MLE) of the parameter 

  are the values of ̂  that maximizes the 

likelihood function, where 

 k ,,, 21   and  k ˆ,,ˆ,ˆˆ
21  . 

Based on the equation above, the maximum 

likelihood estimates of   are the likelihood 

of ̂  such that: 

   


;maxˆ; xlxl


  

where   is the parameter space. 

The determination of ̂  becomes relatively 

simple if the likelihood function  ;xl  is 

twice differentiable in the range of definition 

of  . In other words, ̂  is the solution of the 

following k  equations: 

 
kj

xl

j

,,3,2,1,0
;









 

But the values of   that maximizes  ;xl  

also maximizes its common logarithm 

 ;log xl  or natural logarithm  ;ln xl , 

and in most cases it is easier to solve the 

following k  equations rather than the one 

above. 

 
kj

xl

j

,,3,2,1,0
;ln









 

 

3.8 Procedure for the proposed alternative 
The proposed alternative is attempted under 

the following steps: 

Step 1: Transform the non-linear split-plot 

model to a probability density function. 

 

Step 2: Apply the method of MLE to obtain 

the parameter estimates of the mean function. 

Step 3: Apply the method of MLE to obtain 

the parameter estimates of the 

variance-covariance components. 

Step 4: Discuss findings via comparison of 

the existing and proposed procedures. 

 

4.0 IMPLEMENTATION 

 

4.1 Development of the proposed 

procedure 

Our development commences with a theorem 

and an accompanying proof that the multiple 

linear regression model can be transformed to 

a probability distribution (or density) 

function. Now we consider the theorem 

below. 

 

Now, the nonlinear split-plot model which 

has WPE and SPE is a special case of a 

nonlinear model with random effects (that is, 

nonlinear model with variance components 

WPE and SPE). The formulated model is 

given as follows. 

Let 

    wxfy ,  

Inserting the levels of the factors to be 

investigated makes this equation to become. 

  ijkijijkijk wxfy   ,  

where, 
ijky  is the response variable for 

si ,,1  replicates ( R ), block aj ,,1  

levels of the WP factor A , bk ,,1  levels 

of the SP factor B ; ijw  is the WPE; 
ijk  is the 

SPE; and  ,ijkxf  is the nonlinear function 

for the mean describing the relationship of 

fixed main and interaction effects to the 

response 
ijky . The parameters R , A  and B  

are assumed fixed. 

 

Theorem 3: 

Let εXβY   be the multiple regression 

model, such that 1nY  is a response matrix, 

 1 pnX  is a design matrix,   11 pβ  parameter 

matrix, and 1nε  error matrix. If there exists a 

non-unique transformation matrix  1 pnF  of 

arbitrary constants then there also exists a 

function 
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   ββxh exp~;  such that   0; βxh  and   1; 




dxβxh . 

Proof: 

Now, 
εXβY   

XβεY   

⇒ 𝜺 − 𝒀 = −𝑿𝜷                                                                                                          (32) 

Let  1 pnF  be a matrix of arbitrary constants. Then pre-multiplying equation (34) by T
F  gives 

   XβFYεF  TT  

   XβFYεF
TT   

   βXFYεF
TT   

Let XFX
T  be the new design matrix, then taking the exponent of both sides of the last 

equation gives 

    βXYεF
 expexp T  

Multiplying (Hadamard product) both sides of the last equation by β  gives 

      βXβYεFββxh
 expexp; T  

 

That is, 

⇒ 𝒉(𝒙;𝜷) = 𝜷𝑒𝑥𝑝{−𝑿∗𝜷}                                                                                        (33) 
⇒ 𝒉(𝒙;𝜷) = 𝜷 𝑒𝑥𝑝{𝑭𝑇(𝜺 − 𝒀)}                                                                                       (34) 

Equation (35) shows that    ββxh exp~;  and as such   0; βxh  and   1; 




dxβxh . 

4.2 Parameter estimation via the proposed procedure 

Here, we consider the non-linear split-plot model in its matrix form 

𝒀 = 𝒇(𝒙; 𝜽) +𝑾+ 𝜺                                                                                                      (35) 
Applying theorem (3), we have 

   θxfεWY ;  

⇒ (𝑾+ 𝜺) − 𝒀 = −𝒇(𝒙; 𝜽)                                                                                            (36) 

Let F  be a matrix of arbitrary constants. Then pre-multiplying equation (38) by 
T

F  gives 

    θxfFYεWF ; TT  

    θxfFYεWF ;TT   

Now, we assume that that the non-linear component may be written as product of the design 

matrix X  and the parameter matrix θ , in which case,   θXθxf ; . Hence, 

   θXFYεWF
TT   

   θXFYεWF
TT   

Let XFX
T

 be the new design matrix, then taking the exponent of both sides of the last 

equation gives 

     θXYεWF
 expexp T  

Multiplying (Hadamard product) both sides of the last equation by β  gives 

       θXθYεWFθθxh
 expexp; T

 

That is, 

⇒ 𝒉(𝒙;𝜽) = 𝜽 𝑒𝑥𝑝{−𝑿∗𝜽}~ 𝑒𝑥𝑝(𝜽)                                                                        (37) 
⇒ 𝒉(𝒙;𝜽) = 𝜽 𝑒𝑥𝑝{𝑭𝑇{(𝑾 + 𝜺) − 𝒀}}                                                                    (38) 
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In order to estimate the parameters of the model, we now apply the maximum likelihood 

estimation method to equation (37) beginning with obtaining the likelihood function 

   θXθθxh
 exp;  

   





1

1

exp;
p

i

L θXθθx  

  





1

1

;
p

i

eL θX
θθx  

  
 Xθ

θθx eL p 1;  

    
Xθθθx exp; 1pL  

 

Taking the natural logarithm of both sides of the last equation gives 

      
Xθθθx expln;ln 1pL  

        
Xθθθx explnln;ln 1pL  

      Xθθθx ln1;ln pL  

 

Differentiating the last equation partially with respect to each parameter i  of the non-linear 

split-plot model gives: 

     





 Xθθθx ln1;ln pL
ii 

 

        θXθθx
iii

pL









 ln1;ln  

1,,3,2,1  pi  . In order to obtain the parameter estimates θ̂  for the non-linear split-

plot model, we equate the each of the 1p  partial derivatives above to zero and solve to get 

each i̂ . That is, 

⇒ (𝑝 + 1)
𝜕

𝜃𝑖
{𝑙𝑛 𝜽} −∑𝑿

𝜕

𝜃𝑖
{𝜽} = 0                                                                                   (39) 

⇒

𝜕
𝜃𝑖
{𝑙𝑛 𝜽}

𝜕
𝜃𝑖
{𝜽}

=
∑𝑿

(𝑝 + 1)
                                                                                                               (40) 

 

4.3 Variance component estimation via the proposed procedure 

For the variance component estimation, we shall obtain the maximum likelihood estimates of 

the random error effects using equation (38). Of course, equation (38) is a probability density 

function especially because it is a variant of equation (37) which has been established to be an 

exponential distribution. 

     YεWFθθxh  Texp;  

      



r

i

TL
1

exp; YεWFθθx  

     








 


r

i

TrL
1

exp; YεWFθθx  



Journal of Science, Engineering and Technology, Vol. 9 (1), March 2022 

67 
 

      
















 


r

i

TrL
1

expln;ln YεWFθθx  

      
















 


r

i

TrL
1

explnln;ln YεWFθθx  

      



r

i

TrL
1

ln;ln YεWFθθx  

     



r

i

r

i

TrL
11

ln;ln YεWFθθx  

Differentiating the last equation partially with respect to each iw  in W  of the variance 

component gives: 

   
 

i

r

i

r

i

T

i w

r

w

L




















 11

ln
;ln

YεWFθ
θx

 

   
 

i

r

i

T

i ww

L




















1;ln

εWF
θx

 

     

 









r

i i

TT

i ww

L

1

;ln εFWFθx
 

⇒
𝜕{𝑙𝑛{𝐿(𝒙; 𝜽)}}

𝜕𝑤𝑖
=∑

𝜕{𝑭𝑇𝑾}

𝜕𝑤𝑖

𝑟

𝑖=1

                                                                                (41) 

Differentiating the same equation partially with respect to each i  in ε  of the variance 

component gives: 

   
 

i

r

i

r

i

T

i

r
L

 


















 11

ln
;ln

YεWFθ
θx

 

   
 

i

r

i

T

i

L

 


















1;ln

εWF
θx

 

     

 









r

i i

TT

i

L

1

;ln



εFWFθx
 

⇒
𝜕{𝑙𝑛{𝐿(𝒙; 𝜽)}}

𝜕𝜀𝑖
=∑

𝜕{𝑭𝑇𝜺}

𝜕𝜀𝑖

𝑟

𝑖=1

                                                                               (42) 

 

In order to obtain the estimates Ŵ  and ε̂  of 

the random effects for the variance 

component of the non-linear split-plot model, 

we equate the each of the r  partial 

derivatives in equation (41) and equation (42) 

to zero and solve accordingly. 

 

4.4 DISCUSSION OF FINDINGS 

The results in this work have shown that, 

rather than use the EGLS technique for 

estimating the parameters of the mean 

function in a non-linear split-plot model, a 

conversion of the said model to a probability 

density function could be a useful (but non-

complex) procedure for obtaining the said 
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estimates of the parameters. More so, rather 

than use the MLE-approach of Marcia and 

John (1990), as well as David, Asiribo and 

Dikko (2018; 2019), the MLE approach may 

yet be used but this time with a variant of the 

probability density function with which 

estimates of the parameters of the mean 

function were obtained.  

 

4.5 Suggestions for further studies 

As suggestions for further studies, attempts 

should be made at estimating the parameters 

of a non-linear split-plot model via other 

estimation procedures aside the previously 

used ones as this could lead to deeper 

theoretical and practical results. And 

attempts should also be made at remodelling 

the non-linear split-plot model to any other 

distribution, with which a distribution-

adaptive estimation procedure could be used 

to estimate both the parameters of the mean 

function and the variance components. 
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