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ABSTRACT

An alternative procedure to the technique of David, Asiribo and Dikko (2018; 2019) for
estimating the parameters of a non-linear split-plot model was proposed in this study. David,
Asiribo and Dikko (2018; 2019) — whose study advanced the work of Marcia and John (1990)
on the remodeling of split-plot models to non-linear forms, proposed the combined
implementation of the EGLS (Estimated Generalized Least Squares) and then MLE
(Maximum Likelihood Estimation) techniques for estimating the parameters of the nonlinear
split-plot design model. Here, the techniques of EGLS and MLE were used, respectively, to
estimate the parameters in the mean function and variance components of the non-linear
split-plot model. However, since the latter technique as used by the authors proved inefficient
for implementing further analyses especially as the estimates obtained were biased
downwards, this study therefore proposed a three-step routine to bypass this pitfall. The first
step in the thesis was to transform the non-linear split-plot model to a probability density
function via established theorems, following which an MLE routine (which replaces the
EGLS technique) is implemented on the obtained density function in order to obtain
estimates of parameters in the mean function part of the non-linear split-plot model.
Thereafter, and lastly, the MLE was used on a variant of the density function in order to
obtain estimates of the variance components of the non-linear split-plot model in contrast to
approach of MLE used prior to this study. Findings of the study have shown this proposed
routine to be a better choice at bypassing the deficiency of the existing routine to an extent;
and, hence, justifying the need for a more detailed comparison to be made as we have
recommended.
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1.0 INTRODUCTION

An important requirement for making fast
and reliable progress in many branches of
today’s society is the efficient use of
experimental design methodology (Bruce,
2018; Montgomery, 2013; Naes, Aastveit &
Sahni, 2007). Popular amongst the most
frequently used types of experimental
designs, are the factorial designs and
fractional factorial designs. Experimenters
use these two popular design types because
they are simple and generally straightforward
to generate and analyze, and can be used in a
number of different situations. However, in
some multifactor  experiments, an

experimenter may often encounter cases in
which he is unable to completely randomize
the order of the experimental runs. In such
cases, the basic requirements of
randomization and blocking of experimental
runs are usually difficult to satisfy due to
either economic or practical reasons (Bradley
& Christopher, 2009). Circumstances of this
nature often prompt a generalization of the
factorial design or fractional factorial design
(Montgomery, 2013). This generalization is
only feasible with the application of various
restrictions imposed on the structure of the
factorial design or fractional factorial design;
hence, resulting in data with more complex
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error structure than that of the completely
randomized designs (CRD).

One of the most important and frequently
used design strategies prompted by such
generalization is the “split-plot design
(SPD)”, which has recently received much
attention in the literature of Bruce (2018),
Montgomery (2013), Oehlert (2010), Bradley
and Christopher (2009), Naes, Aastveit and
Sahni (2007), Cox and Reid (2000), Cochran
and Cox (1992), etc.

Recent advancements in the study of the
SPDs have focused on the study of split-plot
design models, which are defined to be a
special class of linear models with two error
terms being the whole plot and subplot error
terms (Marcia & John, 1990; Johannes, 2010;
Toth, 2011; David, Asiribo & Dikko, 2019).
In particular, Marcia and John (1990) have
shown the possibility of remodelling the
split-plot design models in nonlinear forms
containing variance components. Such forms
consist of a combination of nonlinear model
for the mean part of the split-plot design
model — being additive error terms which
describe the covariance configuration of the
models. This study of Marcia and John
(1990) was advanced by the independent
studies of David, Asiribo and Dikko (2018;
2019) who respectively used the estimated
generalized least squares (EGLS) and
maximum likelihood estimation (MLE) in
estimating parameters of nonlinear split-plot
design models.

Sadly, nonlinear modelling of split-plot
designs has indeed attracted little interest
mainly in estimation of parameters, even
though the available procedures for
estimating parameters of the nonlinear split-
plot model are similar, in some ways, to that
used in estimating the parameters for
nonlinear regression. In particular, only two
recent attempts have been made in succession
by David, Asiribo and Dikko (2018, 2019) at
estimating parameters of the nonlinear split-
plot design model as proposed by Gumpertz
and Rawlings (1992) who continued the

study of Marcia and John (1990) on the
possibility of remodelling the split-plot
design models in nonlinear forms with
variance components. In all attempts, the
authors used ANOVA and minimum
variance quadratic unbiased estimation
(MIVQUE) for estimating the model
variance-covariances. They also used
maximum likelihood estimation (MLE)
technique for estimating the variance
components, but could not make further
analyses with it because the MLE estimates
were biased downwards. In lieu of the
foregoing pitfall, this study was an attempt at
proffering an alternative to the EGLS-MLE
technique of parameter estimation for
nonlinear SPD models as tendencies abound
that certain interesting theoretical and
practical results could emerge.

2.0 LITERATURE REVIEW

2.1 Definitions, relevance and applications
of the split-plot design

Split-plot designs were originally developed
by Sir Ronald Aylmer Fisher in 1925 for use
in agricultural experiments.  Split-plot
designs are blocked experiments in which the
blocks themselves serve as experimental
units for a subset of the factors. Thus, there
are two levels of experimental units. The
blocks are referred to as whole plots while the
experimental units within the blocks are
called subplots (or split-plots, or split-units).

Corresponding to these two levels of
experimental units, are two levels of
randomization; the first randomization

process is conducted to determine the
assignment of block-level treatments to
whole plots, while the other randomization
which assigns treatments to split-plot
experimental units occur within each block or
whole plot.

The split-plot design (Montgomery, 2013), is
a generalization that results from the inability
to completely randomize the order of the runs
in some multifactor experiments. Lukas
(2014) defined the split-plot design as a
special case of a factorial treatment structure
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which is used when some factors are harder
(or more expensive) to vary than others;
hence, it is one which consists of two (2)
experiments with different experimental
units of different size. This may explain one
of the reasons why a split-plot design was
described by David, Asiribo and Dikko
(2019) as a design which results from a two-
stage randomization of a factorial treatment
structure. Notwithstanding, Bruce (2018)
earlier described it as one in which the levels
of one or more experimental factors are held
constant for a batch of several consecutive
experimental runs called a whole plot.

Naes, Aastveit and Sahni (2007) have
emphasized that the use of the factorial or
fractional factorial experiments may impose
extra challenges on the experimenter, both
when designing the experiment, and when
analyzing data (in non-replicated cases); but
with split-plot designs, these practical
limitations can be overcome in relation to
cost. David, Asiribo and Dikko (2019) have
stressed that a variety of the split-plot design
forms can be used for reconstructing factorial
designs, fractional factorial designs, response
surface designs (having quadratic and higher-
order surfaces), optimal designs (of the first
and second orders), as well as the sequential
and mixture designs.

Chang-Yun (2016) proposed a new method
for constructing optimal split-plot designs
that are robust for model misspecification.
The author provided a general form of the
loss function used for the D-optimal minimax
criterion and applied it to searching for robust
split-plot  designs. To more efficiently
construct designs, the author developed an
algorithm which combines the anneal
algorithm and point-exchange algorithm.
Hence, the author modified the update
formulas for calculating the determinant and
inverse of the updated matrix and applied
them to increasing the comparing speed for

his developed program. Angi (2016)
investigated two different approaches,
Neymanian randomization-based method

and the Bayesian model-based method,

towards the causal inference for 22 split-plot
designs, both under the potential outcome
framework.

Luis (2015) provided practical strategies to
help practitioners in dealing with the
challenges presented by second-order block
split-plot design, including an end-to-end,
innovative approach for the construction of a
new form of effective and efficient response
surface deign referred to as second-order sub-
array Cartesian product split-plot design.
This new form of design was an alternative to
the ineffective split-plot designs that were
then in use by the manufacturing/quality
control community. The design was
economical, the prediction variance of the
regression coefficients was low and stable,
and the aliasing between the terms in the
model and effects that were not in the model,
as well as the correlation between similar
effects that were not in the model, was low.
Based on an assessment using well-accepted
key design evaluation criterion, it was
demonstrated that second-order sub-array
Cartesian product split-plot designs perform
as well or better than historical designs that
have been considered standards up to this
point.

Vahide and Rajael (2015) studied the factors
affecting liquidity accepted in stock
exchange Agricultural Machinery companies
using a Split-Plot design model. In their study
they considered all five Agricultural
Machinery Companies that were accepted in
Tehran Stock Exchange since (1388-1390).
Their study adopted a descriptive research
based on the target application. In this model
(zB), is still the whole plot error but the

blocks xB and blocks x AB interactions
were essentially pooled with ¢, to form the

subplot error. Based on the results, it was
observed that ratio type and company type,
and interactions ratio type and company type,
affected the company’s liquidity.

Oluwole, Amahia and Fakorede (2014)
studied design effects for the maximum
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likelihood estimators of variance components
in a split-plot design. Their study used the
general linear model with one whole plot
factor and one sub-plot factor and assumed
that both factor effects are random variables.
The main problem studied is how to assign a
given number of whole plots with equal sizes
to the level of the whole plot factor in a way
that will form a balanced one-way design.
Their study introduced a method of
classifying the 5 variance components to
make  comparison and  presentation
meaningful. The resulting optimal designs
depended on the true proportional value of
the variance components.

The objective of a tutorial paper by Johannes
(2010) was to review split-plot designs for
full and fractional factorial experiments, and
to explain why they often arise in industrial
experiments, and provide several illustrative
examples.

Beasley and Bruno (2009) reviewed three
aligned rank methods for transforming data
from multiple group repeated measures
(otherwise, split-plot) designs. Univariate
and multivariate statistics for testing the
interaction in split-plot designs were
elaborated. Computational examples were
used to provide a context for performing
these ranking procedures and statistical tests.

2.2 Linear and non-linear split-plot models
In Montgomery (2013), the linear model for
a split-plot design with main treatment A and

sub-treatment B is one in which z;, 3, and
(z8), represent the whole plot and

correspond, respectively, to replicates, main
treatments (factor A), and WPE (replicates
xA); and y,, (W)ikv (ﬂ?”)jk and (Tﬂ?’)ijk
represent the subplot and correspond,
respectively, to the sub-plot treatment (factor
B), the replicates x B and AB interactions,
and the SPE (replicate x AB ). Note that WPE
is the replicates x A interaction and the SPE
is the three-factor interaction replicates x AB
. The sums of squares for these factors are

computed as in the three-way analysis of
variance without replication.

According to David, Asiribo and Dikko
(2019), the nonlinear split-plot model which
has WPE and SPE is a special case of a
nonlinear model with random effects (that is,
nonlinear model with variance components
WPE and SPE). The assumptions are given as
follows.

Assumption 1:
It is presumed that the WPE and SPE are
random effects. Also, it is presumed that

w, ~N(0,02,) and £, ~N(0,02).

Wiid

Assumption 2:

Let & be the parameter estimate of @ for the
model which follows an asymptotic normal
distribution with mean @ and variance

o?(F'F)™*, where F isthe nxu matrix with
elements  of (x;,0)/00 which has full

column rank, u. This implies that the
estimated response Y, follows an asymptotic

normal distribution with mean vy, and

variance-covariance (VC) matrix of the
reaction vector.

Assumption 3:
If the parameters in the mean function,

f(xijk,H) is p+1 and r is the number of

random effects, then n which is the number
of observations in the data set must be greater
than or equal to p+r+1 for all parameters

to be estimated. This implies that
n>p+r+1.

3.0 RESEARCH METHODOLOGY

Here, we have presented the procedure of
EGLS (for estimating the parameters in the
mean function component of the non-linear
split-plot model), the variance component
estimation by REML, needed concepts in the
proposed alternative, and the procedure for
implementing the proposed alternative.
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3.1 Estimated generalized least squares (EGLS) estimation technique
When the covariance matrix of y is known then the GLS estimator, 6, is found by
minimizing the objective function

(y - F:0) vy — F(X; 0)) (1)
with respect to ¢; where V is a known positive definite (non-singular) covariance matrix
which arises from the model:

Vi = f(xijir, 0) + Wik + Eijra (2)
where, E(w;,)=0, cov(wijk):crfle, E(e;0)=0 and cov(ajIN).
Let the variance-covariance matrix of the observations var (y) be written as
V=cll,+0o’l,
=0l

Using Cholesky decomposition, the inverse of a positive definite matrix Z (non-singular
matrix) is positive definite with Cholesky factorization if Z = L L', where L is invertible (its
diagonal elements are nonzero) then the right and left inverses of Z are as follows.

Right inverse of Z is T=L"L " suchthat ZT =LL'L"'L'=LL" =1

Right inverse of Z is T=L"L" suchthat ZT =L'L'LL' =L"'L' =1

Hence, Z is invertibleas Z'=L"L"and T'=LL".
Multiplying model (2) by L™ on both sides yield that

L_lyijk = L"lf(xijk,e) + L_lwij + L_lgijk (3)

Let | =T =LL" then the Cholesky factorization of the error variance is as follows.
L‘l{cov(gijk, )+ cov(wijk )}L‘t =L! cov(gijkl )L‘t +LT cov(wijk)L‘t

=Lt {cov(gijk )+ cov(wij )}

=L o)L

=o’L'LL'L

=o’l

Define Tijk = L_lyijk ! M (Xijk’e*): L_l f (Xijkﬁ) and Qijk = L_l(wij )"' I—_l (gijk)
Then equation (3) becomes

T = M(xiji, 07) + Qi (4)
where, E(Qijk)= 0 and V(Qijk)z o’ . Thus the GLS model has been transformed to an OLS

model. Hence, model (4) is to be solved using the OLS technique as follows. Taking the
summation of both sides of (4) and squaring we have

s a b s a b
Z Z Z Qi = Z Z Z{Tijk — M (xij, 9*)}2 (5)
i j k i j k

57



E. M. Egomo et al.: Alternative Technique for Parameter Estimation of Non-Linear Split-Plot Model

Let L(0")= ZZZ% iii{ﬂk—'\ﬂ

(Xijkl 0" )}2

Minimize L(¢9 ) w.r.t. 67, equate to zero and divide both sides by —2 we have,

oL(6")

06;, ZZZ{TW M (xijua, 6°)} {

*:9*

aM(xUk, 0" )} ©
6

At this point, equation (6) has no closed form, and hence will be solved iteratively using the
Gauss-Newton method via Taylor series expansion of M (xijk, ,49*) at first order. Note that the

Taylor series expansion is given as

, (x— Q? (x - )h "
f)=fl@+&-af'(@+——f"(@++—F7—f"(a) + Rpys (7)
Therefore, we have
OM (x;x,6")
M(xjy, 07) = M(xyj., 05) + (67 — Qfo)al—éf
1 0*=0;
oM (x;i, 0"
+ (0 —950)% o
2 =03
oM (x;i, 0"
+(6;, = 6;0) % (®)
h 0*=
* 6M< Uk’e ) * *
L et M( Xij 10 )=77(9 )and dij YT forall N casesand 6 =6 — @, then (8)
h 0" =4,

becomes
n(6*) =n(6;) + Dyb

9)

where D, is the NxH derivative matrix with elements {dijkxh} and this is comparable to

approximating the residuals for the model, that is, Q(Q*):T -n (0) by
Q0" )=T-(7 (6;)+ Dy0)

aler
N(6*) =z, — Dy6
where z, =T - 77( )and5 o -6;.

The Householder (1958) QR decomposition
is applied to (26), as a result of its numerical
stability characteristics for estimating the
model parameters. This is done to decompose
D, into a product of an orthogonal matrix

and an inverted matrix.

Proof:

Let an xx y matrix have columns w,,w,,...,

Also, let g;,0,,...,0,,0,.,q;--

)-T-0(6;)-D,0

(10)

Theorem 1:
Suppose A is a full column rank matrix of
xxy, then A can be written as A=QR

where Q is a matrix of xxy whose column

vectors create orthonormal basis for the
column space of A while R is an yxy

invertible upper triangular matrix.

w, vectors.
.., be orthonormal vectors such that
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o]l =1, qiq; =0 if i#]
Then Q is mxn with orthonormal columns such that, Q'Q =1.
If A is asquared matrix (x =), then Q is orthonormal, that is, Q'Q =QQ" =1, hence, g,
is orthonormal to w,,w,,...,w
Therefore,

wy = Wy - q1)qy

wy = (W - q)q: + (W2 - q2)q,

y*

Wy = (Wy : CI1)CI1 + (Wy : QZ)qZ +- (Wy : qy)qsl (11)
This implies that A = QR

/(W1 q1) (wy-qz) - (W1 ’ Qy)

wowy = w)=(q a0~ q)| ©  W2rgd) - (w, : ay) | (12)
\ 0 0 (Wi qr)
Let A=(w, w,--w,)and R, =w, -q, therefore, equation (12) is written as
Ry Ry; - Rly\
A=(q1 a2 - ay) \ L Zy/ (13)
0 0 R,

Equation (13) shows that R is yxy upper

triangular with nonzero diagonal elements  Proof:

and R is non-singular (since the diagonal et % =(A'A)"A'b be the best approximate
elements are nonzero. This means A=QR.  ¢jjtion to Ax=Db. Based on the

orthonormal and orthogonal property

;I;h;ort'em 2: o with full col exhibited by QR decomposition, if A =QR
is an pxn matrix with full column .~ 1 ~R'Q'.

rank, and if A=QR, a QR decomposition

Therefore,

of A, then the normal system for Ax =b can
be expressed as Rx=Q'b and the least
squares solution is X =R™'Q'b.
%=(A'A)"ADb = (R'Q'QR)'R'Q'b
= R'Q'QRX=R'Q'b
= R'RX=R'Q'b
Since Q'Q =1

X =R1Q'b (14)

Based on the two stated and proved theorems on QR -decomposition, the decomposition of
D, is presented as follows.

Let D, = QR . Where Q is a matrix of NxN and orthogonal, Q'Q = QQ' =1 while R isa
N x H triangular matrix and under the major diagonal R is zero. Writing Q and R as follows,
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Q=(Q,1Q,)

where Q, is the first H columns and Q, is the last N—H columns of Q, and

with R, a HxH upper triangular matrix with all elements greater than zero and R, is a
(N—H)xH lower matrix of zeros. Also,

(Q
o (sz

where Q! and Q} are of dimension HxN and (N—H)xH respectively. Therefore,
Do = QR = Q:R, (15)

Geometrically, the columns of Q define an  simple if the projection is in the coordinate
orthonormal, or orthogonal, basis for the  systemgivenby Q.

response space based on the property that the ~ Next, is transformation of the response
H columns cover the expectation plane.  vector, which is

Projection onto the expectation plane is

g =Qz, (16)
with components

g: = Qiz, (17)
and

g: = Q5z, (18)

The properties of g onto the expectation plane is simply given as

o
0
in Q coordinates and

e =Q (%t) = Q:9: (19)
in the original coordinates. So,

Oy = Rt_lgt

this implies

R.5,=g; (20)

Equation (20) can be estimated using  small with no useful change in the elements
backward solving. The point  of the parameter vector.
n = n(&f)z 77(495 + 60) should now be

closer to y than 77(05)1 and then move to It is expected that the new residual sum of

squares (RSS) should be less than the initial
better parameter value 6 =6, +5, and  estimate but if otherwise, a small step in the

carryout another iteration by calculating new  direction J, is introduced. A step factor A is
residuals z, =T-7(6;), a new derivative  introduced suchas 0; = 6; + 15, where 1 is

matrix D,, and a new increase. Repetition of  chosen to ensure that the new RSS is less than
the process is done until convergence is  the initial estimate. A common method
obtained, that is, until the increment is so  begins with 4 =1 and reduces it by half until
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it is satisfied that the new RSS is less than the
initial estimate.

In actual practice the GLS is impracticable
because in the VC matrix, V is unknown.
Therefore, an estimated V is obtained and
substituted into equation (1) and the term
EGLS is used. Different techniques for
estimating the variance components to
substitute for V in equation (1) are available.
David, Asiribo and Dikko (2018) used the
technique of REML (Residual Maximum
Likelihood) presented in section 3.2 below.

3.2 Variance component estimation
It is known that REML procedure does not

involve @* in the estimation of the variance

component. The function of the likelihood is
based on vectors in the error space, that is, on

linear combinations of y which have
expectation to be zero rather than vy itself. To
obtain these vectors in the error space the
linear approximation of the residuals is used
z, =D,d + ¢ as shown in (10).

To estimate the variance components from
the nonlinear functions of y that would not
involve §*, vectors of the form k'y are
formed whereby k is selected so that
k'D, = 0 which falls in the linear estimate to

the error space. k'y is called the error

contrasts, that is, the part of the data that is
orthogonal to the fixed effects (not dependent
on the values of the fixed effect estimates), k
is a vector from a full rank matrix K and

maximizing the likelihood on K'y, the
function of the log likelihood on K'y, is

1 1
InL(0) = —gln(Zn) — 5 nlKVK| -5 (Kty — K f(X,0))"

X (K'VK)"*(K'y — K'f(X,8))

!

where O = (02

equation (21) becomes,

(21)

:a\f,P,aszpj is then approximated by the surface and letting InLto be T

re)= —gln(Zﬂ)—%ln‘K‘ VK| —%(Kty— KU f(x,0) (K VK] (Kly-K' f(x,0))

_ C—%In‘K‘ VK‘—%(Kty— K! f(x,H))t(Kty(K‘ VK)" —K' f(x,0)(K VK)_I)

1 1
= C— S InIK'VK| - ((Kty _K'f(x, 9))thy(Kva)-1)

+((Kty — Ktf (x,0)) K*f (x, ) (K'VE) ™)

(22)

The third and fourth terms of equation (22) can be expressed respectively as follows.

1

= 2 O KU KTVE) YK — £ (5, 0) K KVK) K

and
1

2

1
=3 (V'KY(K'VK) 1 f(x,0)K — f(x,0)K* (K'VK)~1f (x, 0)K)
respectively. Therefore, equation (22) becomes

Ly K r(eo)rylic vi))-

_((Kty ~KUf(%,0)f K f(x,0)(K' V K)‘l):

1

Ll 00 byt

(23)

1

iyt - 1) ) (o) V) )

(24)

1 1
r(0) =€ ~5InlK'VK| =5 (y' K (K'VK) ' yK — £ (x,0)'K*(K'VK) ™ yK)

+ % (V'K (K'VK) 1 f(x,0)K — f(x,0)' K" (K'VK) "' f(x,0)K)

(25)
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V=c’l= KZafl,l,Kt and VV ™ can be expressed as given below.
=0

W= e = vl e i o (@,
Inserting V into equation (25) we have
2

1
r(e) =c- |k Z G2 LI'K
i=0
2 -1 2 -1
1
—=| K (Kt z aiZIiIfK) yK — f(x, 0)tK* (Kt Z JiZIiIfK> yK
i=0 i=0
2 _1
1
+5| v (Kt Z aiZIiIfK) f(x, 0K
i=0
2 _1
— f(x, 0)'K* (Kf Z aiZIiIfK) flx, 0K (26)
i=0

Differentiate partially equation (26) w.r.t. &’ and equate to zero. By transformation all other

terms in the equation becomes zero since K'D, = K' f(x,0)=K f(x,0)' =0. Hence, we have
or(e) 1 1

— = K'II'K
do?  2|KTYZ o2, IfK|( KO
1 2 -1 2 -1
+5y'K* (KtZUiZIiIfK) (K'I,I'K) <KtZai21ilfK> yK  (27)
i=0 i=0

1 1(Kt|i|;K) 2 K‘[K 3 ot IIIIKjl(KtIiI}K(K Za, u,KJl

K! ZO-IZI,IIK =0

-1
Let Q, = KI(K ZO-' I'I'Kj K the equation (26) becomes

E(tr(thi)) = E(thhViQhY) (28)
Multiply the left hand side of equation (28) by WV ™ we have

—(U‘(Qh D)o (h+1)(Qh V) __(thhV Qry) (29)

(tr(Q(h)V QwV;)) = ((6 (h+1))) (V'QmVi@umwy)) (30)

((8/tns)) = (tr(@m Vi@ 1)) (Y QwViQmyy)) (31)

The solutions to be equations might be negative when more iteration does not improve the log
likelihood. In such a case, the negative value is returned to zero afore the next iteration.
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3.3 Kronecker product
Let A=(a;)and B=(b,) be mxn and pxq matrices, respectively. Then the Kronecker

product

A®B=(a;B)
is an mpxnq matrix expressible as a partitioned matrix with a,B as the (i, j)th partition,
i=1...mand j=1...,n.

The following results are consequences of the definition above:
(i) 0®A=A®0=0

(i) (A, +A,)®B=(A, ®B)+(A, ®B)

(i) A®(B, +B,)=(A®B,)+(A®B,)

(iv) aA®bB =abA®B

(v) AA, ®B,B, =(A, ®B, A, ®B,)

(vi) (A®B)" =A™ ®B™, if the inverses exist.

(vii) (A®B) = A" ®B", using any g -inverses.

(vii) (A®B) =A'®B’

(ix) (A®B)A*®B™)=1

3.4 Hadamard product

If A=(a;)and B=(b;) be each mxn matrices, then their Hadamard product is the mxn
matrix of element-wise products AeB = (aij b; ).

We have the following results involving Hadamard products:

(i) Ae0=0

(i) Aeee'=A=ee'e A

(iii) AeB=BeA

(iv) (A+B)eC=AeC+BeC

(v) tr (AB)=¢'(AeB)e

3.5 The Khari-Rao product
Let A=(A,:---1A,)and B=(B,:---:B, ) be two partitioned matrices with the same number

of partitions. Khari and Rao, in 1968, defined a new product:
(A®B)=(A,®B,:- A, ®B,)
where ® denotes the Kronecker product. It is easy to verify, among several properties, that:
() (A®@B)OC=ABG(BOC)
(i) (T,®T,AGB)=T,AGT,B

3.6 Matrix exponential e” or exp(A), is the mxn matrix given by
Matrix exponential is mathematically defined  the power series:

as a matrix function on matrices analogous to u 1

the ordinary exponential function. It is mostly eh =) —A"

. . . I
used to solve systems of linear differential u=o U

equations. For an mxn real or complex where A° is defined as the identity matrix |
matrix A, the exponential of A, denoted by  with the same dimensions as A. The above
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series always converges, so the exponential
of A is well-defined.

3.7 Maximum likelihood estimation
Let X Dbe a random sample with probability
density function f (x; 8). Then the likelihood

function is defined as:
I (x; 9)=ﬁ f(x;;0)
i=1

Let X Dbe a random sample with probability
density function f (x; 49). Then the maximum
likelihood estimate (MLE) of the parameter
6 are the values of @ that maximizes the
likelihood function, where
0=(0,0,,...0,) and 6=(6,6, ...6,).
Based on the equation above, the maximum
likelihood estimates of & are the likelihood
of 6 such that:
I (x; 0): max | (x; 0)
where Q is the parameter space.
The determination of & becomes relatively
simple if the likelihood function 1(x; 8) is
twice differentiable in the range of definition
of 6. In other words, @ is the solution of the
following k equations:
a“*mzo,szza“”k
00,

But the values of @ that maximizes I(x; 8)
also maximizes its common logarithm
logl (x; #) or natural logarithm Inl(x; @),
and in most cases it is easier to solve the
following k equations rather than the one
above.

aInl(x;6)

00,

=0, j=123, ..k

3.8 Procedure for the proposed alternative
The proposed alternative is attempted under
the following steps:

Step 1: Transform the non-linear split-plot
model to a probability density function.

Step 2: Apply the method of MLE to obtain
the parameter estimates of the mean function.

Step 3: Apply the method of MLE to obtain
the parameter estimates of the
variance-covariance components.

Step 4: Discuss findings via comparison of

the existing and proposed procedures.

4.0 IMPLEMENTATION

4.1 Development of the
procedure

Our development commences with a theorem
and an accompanying proof that the multiple
linear regression model can be transformed to
a probability distribution (or density)
function. Now we consider the theorem

below.

proposed

Now, the nonlinear split-plot model which
has WPE and SPE is a special case of a
nonlinear model with random effects (that is,
nonlinear model with variance components
WPE and SPE). The formulated model is
given as follows.

Let

y=f(x,0)+w+e
Inserting the levels of the factors to be
investigated makes this equation to become.
Yige =T (Xijk’6)+V\lij *+ Eijk

where, 'y, is the response variable for
i=1...,s replicates (R), block j=1,...,a
levels of the WP factor A, k=1,...,b levels
of the SP factor B ; w; is the WPE; &, is the

SPE; and f (xijk,e) is the nonlinear function

for the mean describing the relationship of
fixed main and interaction effects to the
response y;, . The parameters R, A and B

are assumed fixed.

Theorem 3:
Let Y =Xp+¢ be the multiple regression

model, such that Y, is a response matrix,
X (ps) 1S @ design matrix, B,.;,, parameter
matrix, and €, error matrix. If there exists a
non-unique transformation matrix F_ ., of

arbitrary constants then there also exists a
function
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h(x;B)~ exp(B) such that h(x;$)>0 and Th(x;B)dx =1,

Proof:
Now,
Y=Xp+g
=Y-eg=Xp
>e-Y=-XB (32)
Let F,,(,..) be amatrix of arbitrary constants. Then pre-multiplying equation (34) by F' gives

=F (e-Y)=F" (- XB)

=F"(e-Y)=-F" (Xp)

=F"(e-Y)=—(F"X)p
Let X" =F"X be the new design matrix, then taking the exponent of both sides of the last
equation gives

= exp {FT (e Y)}: exp {—X* B}
Multiplying (Hadamard product) both sides of the last equation by B gives
= h(x;B)=Bexp{F" (- Y)}=Bexp{-X" B}

That is,
= h(x; B) = B exp{—X"B} (33)
= h(x; B) = B exp{F" (e - Y)} (34)

Equation (35) shows that h(x; B) ~ exp(B) and as such h(x;p)>0 and Th (x;p)dx =1.

4.2 Parameter estimation via the proposed procedure
Here, we consider the non-linear split-plot model in its matrix form
Y=f(x;0)+ W +¢ (35)
Applying theorem (3), we have
Y- (W+g)=f(x;0)
>W+e)-Y=—f(x;0) (36)
Let F be a matrix of arbitrary constants. Then pre-multiplying equation (38) by F™ gives
=F (W+g)-Y =F" {~f(x;0)}
=F (W+g)-Y =-F" {f(x;0)}
Now, we assume that that the non-linear component may be written as product of the design
matrix X and the parameter matrix @ , in which case, f(x;0)=X®. Hence,
=F"(W+g)-Y =-F' (X0)
=F (W+g)-Y=—F" X )0
Let X" =F"X be the new design matrix, then taking the exponent of both sides of the last
equation gives
= exp{FT{(W+e)-Y}j=exp{-X" 0}
Multiplying (Hadamard product) both sides of the last equation by B gives
= h(x;0)=0exp{F" {(W+e)-Y}}=0exp{-X" 0}

That is,
= h(x;0) = 0 exp{—X*0} ~ exp(0) (37)
= h(x;0) = 0 exp{FT{(W + &) — Y} (38)
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In order to estimate the parameters of the model, we now apply the maximum likelihood
estimation method to equation (37) beginning with obtaining the likelihood function

— h(x;0)=0exp{-X"0}

= L(x;G):ﬁeexp(—Xe)

i=1

p+1
=L(x;0)=]J0e™
i=1

— L(x;0)=0"" "2*
= L(x;0)=0""exp(-03 X)

Taking the natural logarithm of both sides of the last equation gives
= In{L(x;0)} = In{0°" exp(- 0% X)}
= In{L(x;0)} = In{0°"* |-+ In fexp (- 03 X)}
= In{L(x;0)}=(p+1)In6 -0 X

Differentiating the last equation partially with respect to each parameter 6, of the non-linear
split-plot model gives:

:>%In{L(x;B)}z%{(p+1)ln0—ﬁzx}

= 2ln{L(x;e)} (p +1)§{|n9}—zxi{e}
0 0 0
Vv i=123,...,p+1. In order to obtain the parameter estimates 0 for the non-linear split-
plot model, we equate the each of the p +1 partial derivatives above to zero and solve to get

each 6. That s,
9 9
:>(p+1)0—i{ln9}—ZX0—i{9}=0 (39)

d

—{ln 6}

Hia = Z+X1) (40)
o, 16} p

i

4.3 Variance component estimation via the proposed procedure

For the variance component estimation, we shall obtain the maximum likelihood estimates of
the random error effects using equation (38). Of course, equation (38) is a probability density
function especially because it is a variant of equation (37) which has been established to be an
exponential distribution.

h(x;0)=0exp{F"{(W+z)-Y}}

= L(x;9)=f[{eexp{FT{(W+s)—Y}}}

i=1

L L(x:0)=6" exp{ Zr:{FT{(W+s)—Y}}}

i=1
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= In{L(x;0)}= In{()rexp{I
= In{L(x;0)}=In®" + In{exp

= In{L(x;

)}_rlne+

{

= In{L(x;0)}=rn®+> F" (W+¢g)-

i=1

M-

I
S ok

=

[F{(W+g)- Y}}}}
e () il

{FT{(W +2)- v}

Yy
i-1

=1

-

Differentiating the last equation partially with respect to each w, in W of the variance

component gives:

rInGJrZr:FT (W +¢)-

]

i=1

oW,

a{ln{ux;e)}}f{iFT o)

i=1

oW,
_ o{n{L(x;0)}
ow,
H{in{L(x; 0)}} _ ~C o{F'W}
= aWL' B Z an'

i=1

Differentiating the same equation partially with respect to each ¢,

component gives:

rln()JrZr:FT (W+¢)-

ow,
L O{FTW+FTg|
_izzl“ ow,

(41)

in ¢ of the variance

]

i=1

ja{m{ux;e)}}f{

o0&,

o0&,

a{ln{ux;e)}}f{iFT o)

i=1

oe,
. o{In{L(x;0)}}
0¢;
{n{L(x;0)}} ~— d{F e}
= aEi - Z asi

i=1

In order to obtain the estimates W and & of
the random effects for the variance
component of the non-linear split-plot model,
we equate the each of the r partial
derivatives in equation (41) and equation (42)
to zero and solve accordingly.

o0&,

O{FTW+Fe|

i=1 0&;

(42)

4.4 DISCUSSION OF FINDINGS

The results in this work have shown that,
rather than use the EGLS technique for
estimating the parameters of the mean
function in a non-linear split-plot model, a
conversion of the said model to a probability
density function could be a useful (but non-
complex) procedure for obtaining the said
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estimates of the parameters. More so, rather
than use the MLE-approach of Marcia and
John (1990), as well as David, Asiribo and
Dikko (2018; 2019), the MLE approach may
yet be used but this time with a variant of the
probability density function with which
estimates of the parameters of the mean
function were obtained.

4.5 Suggestions for further studies

As suggestions for further studies, attempts
should be made at estimating the parameters
of a non-linear split-plot model via other
estimation procedures aside the previously
used ones as this could lead to deeper
theoretical and practical results. And
attempts should also be made at remodelling
the non-linear split-plot model to any other
distribution, with which a distribution-
adaptive estimation procedure could be used
to estimate both the parameters of the mean
function and the variance components.
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