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Abstract: In this study, we obtain an approximate solution of the Schrodinger equation in arbitrary dimensions for the
generalized shifted Hulthén potential model within the framework of the Nikiforov—Uvarov method. The bound state
energy eigenvalues were computed, and the corresponding eigenfunction was also obtained. It is found that the numerical
eigenvalues were in good agreement for all three approximations scheme used. Special cases were considered when the
potential parameters were altered, resulting in Hulthén potential and Woods—Saxon Potential, respectively. Their energy
eigenvalues expressions agreed with the already existing literature. A straightforward extension to the s-wave case for
Hulthén potential and Woods—Saxon potential cases is also presented.
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1. Introduction

In the last two decades, theoretical physicists have made
unprecedented progress in the study of the behavior of
different quantum mechanical systems [1]. Apparently, this
progress has been made possible by obtaining exact or
approximate solutions of the nonrelativistic and relativistic
wave equations for different physical potentials of interest.
The exact or approximate solutions of these equations with
central potentials play a crucial role in quantum mechanics
[2-5].

The analytical solution of Schrédinger equation with
¢=0 and ¢ +# 0 for some physical potentials has been
addressed by many researchers. Some of these exponential-
type potentials include, Manning—Rosen potential [6-9],
Eckart potential [10-12], Poschl Teller Like Potential
[13, 14], a hyperbolic potential [15-17], generalized Morse
potential [18], the Morse potential [19] and screen Cou-
lomb potential [20].
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The radial Schrodinger equation for these potentials can
be solved exactly for £ = 0 (s-wave) but cannot be solved
for these potentials for ¢ £ 0. To obtain the solution for
{#0, we employ the Pekeris-type approximation
scheme to deal with the centrifugal term or solve numeri-
cally [21].The most widely used approximation was
introduced by Pekeris [22], and another form was sug-
gested by Greene and Aldrich [23] and Qiang et al. [24].

Several methods have been employed to obtain the
solutions of the nonrelativistic wave equations with a
chosen potential model. These includes the Nikiforov—
Uvarov method (NU) [25-28], Qiang—Dong proper quan-
tization rule [29], Factorization Method [30-32], super-
symmetry quantum mechanics (SUSYQM) [33-35],
Asymptotic Iteration Method (AIM) [36, 37], algebraic
approach [38], etc.

The Hulthén potential [39, 40] plays a vital role in
atomic and molecular physics [41]. It has also been used to
explain the electronic properties of some alkali halides.
[42] More so, it resembles the Coulomb interaction in
structure. The Hulthén potential is one of the important
short-range potentials (i.e., large b and small [ [43]) in
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physics. The potential has been used in nuclear and particle
physics, atomic physics, solid-state physics and its bound
state and scattering properties have been investigated by
employing numerous techniques. General wave functions
of this potential have been used in solid-state and atomic
physics problems. It should be noted that Hulthén potential
is a special case of Eckart potential.

The shifted Hulthén potential has not received great
attention from researchers. The Dirac equation with this
potential has been investigated [44]. Recently, Ikot et al.
[45] used SUSYQM approach to solve the Dirac equation
with this potential in the presence of the Yukawa-like
tensor (YLT) and generalized tensor (GLT) interactions.
Ikot et al. [46] obtained the approximate analytical solu-
tions of the Dirac equation for this potential within the
framework of spin and pseudospin symmetry limits for
arbitrary spin—orbit quantum number k using the super-
symmetry quantum mechanics.

The Shifted Hulthén potential is given as [44-46];

(Vo +1/2b%)e " vie=2/b

V(r) = 1 _ efr/h (1 _ e_’/b)2

(1)

which differs from the special potential Hulthén potentials
[44] by the second term on the right-hand side. In the
potential relation, b, is the range of the potential, V, and V;
represents the depth of the potential well [44]. If V| =0,
(Vo +1/2b%) = —(Vy + 1/2b%), Eq. (1) reduces to the
special Hulthén potential [46], and this is also different
from the usual Hulthén potential with a new term —1/2b°.

Motivated by the success in obtaining analytical solution
of the Dirac Equation (Relativistic Quantum Mechanics)
with this potential Eq. (1) using the standard method by
Jian et al. [44] and Supersymmetric Quantum Mechanics
(SUSYQM) method by Ikot et al. [45, 46], we attempt to
modify the shifted Hulthén potential by introducing a
deformation parameter (g), and solve for this potential
using a different method called the Nikiforov—Uvarov
method (N-U) [47]. The essence of introducing the
deformation parameter is to have a wider range of appli-
cations. The proposed potential (generalized shifted Hul-
thén potential) is given by;

(Vo + 1/2b%)e 7"
1 _ qefr/b (1

Vle—Zr/b

— ger/b)?

Vo(r) = (2)

In the potential relation, b is the range of the potential
and V| represents the depth of the potential well. Bear in
mind the outcomes of the Kratzer potential in the ad hoc
inverse square term for small distances [46].

The short-range generalized shifted Hulthén potential
will be solved within the framework of the Pekeris-type
approximations suggested by [24] to solve the Schrodinger

equation (nonrelativistic Quantum Mechanics) for any
arbitrary {-state. These approximations are [32, 48, 49]:

efr/b

P ge ) e

1 ~
e
Equation (3) is the commonly used approximation [24];

1 i e(l—r)/h e—Zr/b
¥ iy T p (4)
I b (1 —qe V/ ) (1 _ qefr/b)

and the one suggested by [24];

11 [1 e /b
272 12+(1—qe—’/l’)2] (5)

Equations (4) and (5) are more general than Egs. (3), (4)
and (5) which give a better approximation to the centrifugal
term when b is small [24].

In view of the above, the research reported in the present
paper was also motivated by the fact that the nonrelativistic
treatment of the shifted Hulthén potential has not been
reported in the available literature.

This paper is organized as follows. In Sect. 2, the review
of the Nikiforov—Uvarov Method is presented. In Sect. 3,
this method is applied to solve the radial Schrodinger
equation with the generalized shifted Hulthén potential. In
Sect. 4, numerical calculations are given, the results are
compared for the three approximations understudy, and we
discuss the results. In Sect. 5, special cases are presented,
comments are made, and we give a brief concluding
remark in Sect. 6.

2. Review of Nikiforov—Uvarov method

The Nikiforov—Uvarov (NU) method is based on solving
the hypergeometric-type second-order differential equa-
tions by means of the special orthogonal functions. The
main equation which is closely associated with the method
is given in the following form [43]
(5 S (0) + S (s) =0 ©)
where o(s) and &(s) are polynomials at most second
degree, 7(s) is a first-degree polynomial, and y(s) is a
function of the hypergeometric type.

The exact solution of Eq. (6) can be obtained by using
the transformation

W(s) = ¢(s)y(s) (7)

This  transformation reduces Eq.(6) into a
hypergeometric-type equation of the form

a(s)y"(s) + 1(s)y'(s) + 4y(s) = 0 (8)
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The function ¢(s) can be defined as the logarithm
derivative

d'(s) _ nls)
9) ~ olo) ©)
where 7(s) — % [e(s) — #(s)] (10)

with 7(s) being at most a first-degree polynomial. The
second /(s) being y,(n) in Eq. (7), is the hypergeometric
function with its polynomial solution given by Rodrigues
relation

B
~ p(s)ds

Y (s) [0"p(s)] (11)

Here B, is the normalization constant, and p(s) is the
weight function which must satisfy the condition

(a(s)p(s))'= a(s)7(s) (12)
1(s) = 7(s) + 2=n(s) (13)

It should be noted that the derivative of t(s) with respect
to s should be negative. The eigenfunctions and
eigenvalues can be obtained using the definition of the
following function 7(s) and parameter A, respectively:

O . i) | \/ (6/@) - f(s)) _5(5) ko)

(14)
where k = 4 — 7/(s) (15)

The value of k can be obtained by setting the
discriminant of the square root in Eq. (9) equal to zero.
As such, the new eigenvalue equation can be given as

n(n — 1) ”"

Jp = —nt'(s) — > a'(s), n=0,1,2,... (16)

3. Bound State Solution

The radial Schrodinger equation in D dimension can be
given as [50]:

PRy 2uVy(r) (D+20—1)(D+2(-3) N
dr? n? 4r2

=0

2:uEnl
hz

R,,[(I")

(17)

where p is the reduced mass, E,; is the energy spectrum, 7
is the reduced Planck’s constant, and » and [ are the radial
and orbital angular momentum quantum numbers,
respectively (or vibration—rotation quantum number in

quantum chemistry). Substituting Eq. (2) into Eq. (17)

gives:
danl 2,“ (VO + 1/21?2)6% Vle%
+ —
(1 —ger)
_(D+2A—1)(D+20=3)  2uE,

N 1 — geb
4r2 K2

dr? K2

R,,[(V) = 0

(18)
Simplifying further Eq. 18 becomes:
ARy 2u (Vo + 1/2b%)eb Vieh
2 32 z + 2
dr 73 1 — ges (1 — geb)
(D+20— 1)(D+2€—3)< o2e )
— 4 - 3 Jr
(1 —ge™)

2/“‘EnI
h2

Rnl(r) = 0

(19)

Employing the Pekeris type (approximation 1) (Eq. 3)
and o = 4, Eq. (19) becomes:

d?R,(r) 1
dr? (1— ge2r)?

zluE"[ —20r\2 2:“ a2 —ar —ar
(L= ge ) = (Yot 5 )e ™ (1 —ge ™)

(D+20—1)(D+2¢-3) (aze’“')} Ro)

4
(20)

2 ar
_h_g(vlelu) _

Equation (20) can be simplified further by introducing
the following dimensionless abbreviations
24E,
e = /{;azl
=2
R
2;4<Vo+%)
"o
(D+20—1)(D+20-3)
4

And using the transformation s = e~ so as to enable us

apply the NU method as a solution of the hypergeometric type

Ru(r) _ 5 2 d*Ruls) 5 dRu(s)
A T (22)
PRu(s) . 1—gs dRu(s) 1

ds? s(1—gs) ds $2(1 — gs)*

[_SZ (8nq2 + xq — ﬁ) + S(anq +1— ’I) - Sn]Rnf(s) =0
(23)

Comparing Egs. (6) and (23), we have the following

parameters

T(s)=1—gs

a(s) =s(1 — gs)

a(s) = =5 (eaq” + 2q — B) +5QReng + 1 — 1) — &
(24)
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Substituting these polynomials into Eq. (14), we get
7(s) to be

:f—i\/ +(b+k)s+c (25)
where
q? + quz + X9 — ﬁ
(Z'an + X~ 7]) (26)

c=z¢,

To find the constant k, the discriminant of the expression
under the square root of Eq. (25) must be equal to zero. As
such, we have that

2
ky=—(n—y) x2 sn(%—kﬂ-i-nq) (27)

Substituting Eq. (27) into Eq. (25) yields

A= g (q\/aJr (%2+ﬁ+nq)>—(n—x)
-2 s,,(qzz—klﬂ—nq) (31)

Taking the derivative of t(s) with respect to s in
Eq. (30), we get:

7(s) = —2<q+ ( (%2—#[34—1761) +q\/8_n>> <0

(32)
From Eq. (24), taking the derivative of ¢(s) with respect

to s, we get:
o"(s) = —2¢q (33)
Substituting Egs. (28) and (29) into Eq. (16) and
carrying out simple algebra, we get: 4,. Setting 4, = 4

7
n(s) = —= (CI\/a + <Z +p+ ’7‘1))5 - \/a] and carrying out some algebraic manipulations, we have:
» 2
28 Bny B _ 1

From the knowledge of NU method, we choose the ™" 4 (n L1y i B +g)

expression 7(s)_ which the function t(s) has a negative 2 da
2uv1 D+2/ l)(D+2/—3) 2 2uV Zu(Vo+§) ?
nt
8u (n+ + \/ +2 2;¢v1 D+2Z—1)(D+2€—3)>

derivative. This is given by
¢
ko=—(—y) -2 8n(Z+ﬂ+’7Q) (29)

with 7(s) being obtained as

Substituting Eq. (21) into Eq. (34) yields the energy
eigenvalue equation of the generalized shifted Hulthén
potential in D dimension in the form

Again by using approximation (2) and repeating the
above procedure, we can consequently obtain the energy
eigenvalues as:

2

2 2
2uV, D+2éfl)(D+2l73) o 2uv, ZN(VOJr%) (D+20-1)(D+2¢-3) (e* 1
EAPPrOX2 _h2°‘2 <n+ + \/ T 21 4 Walq 2t Fra 4 g & (36)
nl — _
8u (n+ 4 \/ +h22;;;/12 (Dr2¢ 14)q(zD+2z 3))
w(s) =1 —2gs Again by using approximation (3) and repeating the

—z[( (%2+/3+17q> +q¢a>s—¢a] (30)

Referring to Eq. (15), we define the constant A as

above procedure, we can consequently obtain the energy
eigenvalues as
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Approx3 1202 (((D +20—-1)(D+20— 3)c0> 1
- 4

E -
n 2u 4

2
2 2
1 1, 2uv (D+20-1)(D+20-3)\ " 2uv, 2u(Vo+7)
(n+2+ VAR DR

<"+%+\/}T"'hzz!;‘z/;z+(D+2[71)(D+2[73))

(37)

The corresponding wave functions can be evaluated by
substituting 7(s)_ando(s) from Eqgs. (24) and (28),
respectively, into Eq. (9) and solving the first-order
differential equation. This gives

1 1, B
/it

D(s) = sV (1 — gs) - (38)

The weight function p(s) from Eq. (12) can be obtained
as

2, [4+h+t
pls) =sVor(1—gqs) V7O ! (39)

From the Rodrigues relation of Eq. (11), we obtain

(2\/5,2, / _%+q/—§+g>

Yn(8) = Ny iPn (1 —2gs) (40)

where Pff‘rm is the Jacobi Polynomial.
Substituting ®(s) and y,(s) from Egs. (32) and (34),
respectively, into Eq. (3), we obtain

3 B n
1 /1+Li+? (2\/;;.21 /§+—2+Z)
Ru(s) = NyysVor(1—gs)” V27 'p, ’ (1 —2gs)

(41)

4. Results and Discussion

To show the accuracy of our results, we obtained the
eigenvalues (in units of fm~") numerically (Tables 1, 2, 3)
for arbitrary quantum numbers n and / with the potential
parameter o = 0.025,0.050 and 0.075 fm~!' in 3D. In
Table 1, we present the numerical results for generalized
shifted Hulthén potential in natural units for ¢ = 1 [ab-
sence of deformation (generalized shifted Hulthén)],
potential strength, Vo = 5fm~! and V; =2fm™! and o =
l/b = 0.025,0.050 and 0.075fm™'.The domain in which
the screening parameter o — 0 fm~! is called the low
screening regime. In this regime, the generalized shifted
Hulthén potential model becomes the constant. For a fixed
value of angular momentum quantum [/, the energy spec-
trum increases as the principal quantum number n increases
for the strong potential coupling strengths,Vy = 5 and V; =
2fm~! as seen in Table 1. For a fixed value of angular
momentum quantum /, the energy spectrum increases as the
principal quantum number 7 increases for a small screening
parameter (i.e., low screening regime) “o”. An increase in

Table 1 The bound state energy levels (in units of fm™') of the
generalized shifted Hulthén potential for various values of n, [ and for
h=upu=1,qg=1,Vy=5,V, =2 and ]/b = 0.025,0.050 and 0.075

n 1 l/b Approx. 1 Approx. 2 Approx. 3
0 1 0.025 -—3.117514261 — 3.11753389 — 3.117462178
0.050 — 3.110700106 — 3.110857879 — 3.110491773
0.075 — 3.104584691 — 3.10511967 — 3.104115941
1 1 0.025 - 3.103082968 — 3.10310231 — 3.103030885
0.050 — 3.084157322 — 3.084310638 — 3.083948989
0.075 — 3.06815173 — 3.068664704 — 3.06768298
2 1 0025 —3.089786861 — 3.089805928 — 3.089734778
0.050 — 3.061877318 — 3.062026488 — 3.061668985
0.075 — 3.040735741 — 3.041228935 — 3.040266991
0 2 0.025 -—3.117139376 — 3.117198239 — 3.116983126
0.050 — 3.109268049 — 3.109740695 — 3.108643049
0.075 — 3.101523451 — 3.103123335 — 3.100117201
1 2 0025 —3.102737046 — 3.102795052 — 3.102580796
0.050 — 3.082946589 — 3.083405908 — 3.082321589
0.075 — 3.065803052 — 3.067337454 — 3.064396802
2 2 0025 —3.089468696 — 3.089525875 — 3.089312446
0.050 — 3.060870455 — 3.061317376 — 3.060245455
0.075 — 3.039019378 — 3.040494886 — 3.037613128
0 3 0.025 -—3.116578656 — 3.116696314 — 3.116266156
0.050 — 3.107144798 — 3.108088059 — 3.105894798
0.075 — 3.09705253  — 3.100237354 — 3.09424003
1 3 0025 —3.102219691 — 3.102335639 — 3.101907191
0.050 — 3.08115308 — 3.082069834 — 3.07990308
0.075 — 3.062385156 — 3.065440549 — 3.059572656
2 3 0.025 —3.088992914 — 3.089107212 — 3.088680414
0.050 — 3.059380745 — 3.060272836 — 3.058130745
0.075 — 3.036536508 — 3.039475458 — 3.033724008
0 4 0.025 -—3.115834011 — 3.116029961 — 3.115313178
0.050 — 3.104359635 — 3.105927274 — 3.102276302
0.075 — 3.091311559 — 3.096587012 — 3.086624059
1 4 0.025 -3.10153273 — 3.101725838 — 3.101011897
0.050 — 3.078803444 — 3.080327222 — 3.076720111
0.075 — 3.058019492 — 3.063082576 — 3.053331992
2 4 0025 —3.088361249 — 3.088551611 — 3.087840416
0.050 — 3.057432485 — 3.058915442 — 3.055349152
0.075 — 3.033393131 — 3.038265041 — 3.028705631
3 4 0025 —3.076273284 — 3.076461004 — 3.075752451
0.050 — 3.039925015 — 3.04136992 — 3.037841682
0.075 — 3.016497519 — 3.021196724 — 3.011810019

angular momentum quantum / leads to an increase in the
energy spectrum as the principal quantum number n
increases for a varying screening parameter o and for a
strong potential coupling strength, (Vo and V). For a weak
potential coupling strength, (V, and V;), solutions are
ignored due to the presence of imaginary terms and the



C O Edet et al.

Table 2 The bound state energy levels (in units of fm™') of the
generalized shifted Hulthén potential for various values of , and for
h=u=149=2,Vy=5V; =2 and o« = 0.025

n / Approx. 1 Approx. 2 Approx. 3

0 1 — 3.07804408 — 3.07900825 — 3.077991997
1 1 — 2991656822 — 2.992562348 — 2991604739
2 1 — 2911896391 — 2.912748234 — 2.911844308
3 1 — 2.838174895 — 2.83897748 — 2.838122812
0 2 — 3.075800058 — 3.07868871 — 3.075643808
1 2 — 2.989586095 — 2.992299144 — 2.989429845
2 2 — 2.909983401 — 2.912535695 — 2909827151
3 2 — 2.836405828 — 2.838810616 — 2.836249578
0 3 — 3.072445134 — 3.078210908 — 3.072132634
1 3 — 2.986490142 — 2.991905695 — 2.986177642
2 3 — 2907123184 — 2912218111 — 2.906810684
3 3 — 2.833760719 — 2.838561429 — 2.833448219
0 4 — 3.067992528 — 3.077576635 — 3.067471695
1 4 — 2.982381021 — 2.991383619 — 2.981860188
2 4 — 2.903326769 — 2911796942 — 2.902805936
3 4 — 2.830249678 — 2.838231239 — 2.829728845

Table 3 The bound state energy levels (in units of fm™") of the
generalized shifted Hulthén potential for various values of , and for
h=u=19=-2,Vy=5,V; =2 and « = 0.025

n l Approx. 1 Approx. 2 Approx. 3

0 1 — 3.020072465 — 3.017282372 — 3.020020382
1 1 — 2.817314959 — 2.814748239 — 2.817262876
2 1 — 2.629306878 — 2.626941798 — 2.629254795
3 1 — 2.454721581 — 2.452538949 — 2.454669498
0 2 — 3.025345822 — 3.016966052 — 3.025189572
1 2 — 2.822200951 — 2.814492116 — 2.822044701
2 2 — 2.633840768 — 2.626737579 — 2.633684518
3 2 — 2.458934669 — 2.452379472 — 2.458778419
0 3 — 3.033281168 — 3.016493064 — 3.032968668
1 3 — 2.829553036 — 2.814109248 — 2.829240536
2 3 — 2.640662724 — 2.626432419 — 2.640350224
3 3 — 2.46527366 — 2.452141296 — 2.46496116
0 4 — 3.043909145 — 3.01586518 — 3.043388312
1 4 — 2.839399168 — 2.813601206 — 2.838878335
2 4 — 2.649798308 — 2.626027709 — 2.649277475
3 4 — 2.473761971 — 2.45182566 — 2.473241138

energy spectrum is not complex but real. Beyond this, we
can observe from Table I, the energy eigenvalue is
strongly bounded and an increase in rotational quantum
number / makes energy become more attractive (i.e., the
energy becomes more negative) with increasing o.
Interestingly, the above observation is the same in the
presence of the deformation parameter in the system as

shown in Tables 2 and 3 for ¢ = 2 and ¢ = —2 except for
the fact that the presence of the deformation parameter
makes the energy become more attractive. However, the
energy is more attractive when the deformation parameter
is less than 0 (¢<0). The analytical expressions for the
total energy levels of this system are found to be general in
the sense that it is obtained in arbitrary dimensions and the
presence of the deformation parameter provides an avenue
to arrive at special cases, e.g., when ¢ — —g, we arrive at
the Woods—Saxon potential, etc.

In this study, three approximation schemes were
employed. To show that Egs. (3-5) are good approxima-
tion scheme, we compared r% and the approximation
scheme with o = 0.025 in Fig. 1 for ¢ = 1. In Fig. 2, the
variation of shifted Hulthén potential, special Hulthén
potential and Hulthén potential with r for Vo =5, V| =2
and o = 0.025 was plotted. This was done in order to
enable us to show the behavior of the shifted Hulthén
potential. It can be easily observed that the Hulthén and
special Hulthén behave in the same manner. Figures 3, 4, 5
and 6 show the behavior of the wave function in the
presence and absence of the deformation parameter.
Finally, we point out that these exact results obtained for
this newly proposed form of the potential (2) may have
some interesting applications in the study of different
quantum mechanical systems, atomic and molecular

physics.
12
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r

Fig. 1 Comparison between 1/,,2 and the approximation scheme as
functions of r for « = 0.025
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Fig. 2 Variation of shifted Hulthén potential, Special Hulthén poten-
tial and Hulthén potential with r for V) = 5,V; =2 and o = 0.025
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Fig. 3 Wave functions against radial distance for different values of the
screening parameter («). Wechosen = ¢ =0,g = 1,Vy =5and V; =2
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Fig. 4 Wave functions against radial distance for different values of
the screening parameter (x).n=1, {=0,g=1,Vp=5and V; =2
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Fig. 5 Wave functions against radial distance for different values of
the deformation parameter (q). We chose n=1{=0,
a=0.025,Vy =5and V| =2

5. Special case

In this section, we make some adjustments of constants in
Eq. (2) and Egs. (35), (36) and (37) to have the following
cases:

First, we study the s-wave case (¢ = 0) for D = 3 and
q = 1. The solutions of energy eigenvalues Eqs. (35), (36)
and (37) reduce to the following equation

Approx.1 __ Approx.2 __ pApprox.3
Enl - Enl - Ené

2
2 <2
1 /1, 2\~ 2uv Zu(Vo+7)
. a2 (l’l + 2 + 4 + hzocz) o2 + o2

(n+3++22)

(42)

5.1. Hulthén potential

Ifweset Vi =0,V =5;=0,=4,¢g=1and Vo = —Vyin

Eq. (2), we obtain the Hulthén potential as follows;

0=0,1=0 @=0.025, Vp=3, V=2

04 — q=1
- q=2
02 dm-i
= 00
=
-02
-04
0 < 10 18 20 2s 0 38

Fig. 6 Wave functions against radial distance for different values of
the deformation parameter (¢). We chose n =1, £ =0, o = 0.025,
Vo =5 and Vl =2
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_Voe—ocr
Vi) = Ty

Its energy eigenvalue equation can be deduced from

Egs. (34), (36) and (37) as

Approx.1
E Pp!

nl
2
1 1 (D+20—1)(D+2(-3) 2uVq
o2 (”+z+ \/ﬁf) ~e

8 — _
T (’”%*\/%JFW)

(43)

(44)

2
1 | | (Di201)(D120-3) 2wV,
202 (n+§—|—\/;++> —hl;ag

2.2
EApprox.3 _ h™o
nl 2/1

2
2uVo
(g5 H0l+1)) =37
(6(¢ + 1)Co) — (aeys )

4 (n+4+ i+ e+ )

2

(49)

Equation (44) is identical with the energy eigenvalue
equation given in Eq. (30) of Ref. [51]. More so, if we set
D = 3, we arrive at the energy eigenvalue equation for the
Hulthén potential in 3D

+ (D+2£71)4(D+2Z¥3) (ea _ 1)
Approx.2
E P =-73 (45)
K (n + % + \/% + W)
and Equation (47) is identical with the energy eigenvalues

2.2
EApproxAS _ ha

2

nt 2/,( 4

1 1 (D+20—1)(D+20-3) 20V,
<(D+2€—1)(D+2£—3)C0>_1 <”+5+\/1+ 3 ) ~

<n+%+ \/%+(D+2Z1)4(D+2Z3)>

(40)

In 3D, Egs. (44), (45) and (46) reduce to:

2 2
LI (n+%+\/i+€(€+l)) -4

8u (n+%+ i+£(£+1))

Approx.1 __
EnZ -

(47)

Approx.2
E nt

2 2
o2 <n+%+ Tree+1)) 2% 4 (0 +1)(e* — 1)

v
h*o?

8 (n+1+ i+ e+ )

and

(48)

formula given in Eq. (31) of Ref. [51], Eq. (32) of Ref.
[52], Eq. (24) of Ref. [53] and Eq. (28) of Ref. [54] and
Eq. (36) of Ref. [55]. Equation (49) is identical with the
energy eigenvalues formula (34) of [55]

Furthermore, for s-wave ( £ = 0) states, Egs. (47), (48)
and (49) reduce to

EApproxJ _ EApprox.2 _ EApproxAS

nt nl nl 5
e (et (50)
8u (n+1)

which is identical to the ones obtained before using the
factorization method [56], SUSYQM approach [57-59],
NU method [54, 55, 60] and AIM Eq. (39) of Ref [36]..

5.2. Woods—Saxon potential

Ifv, =0V = ﬁ =0,= %, and ¢ = —1in Eq. (2), we can
obtain the Woods—Saxon potential of the form:

—Voe™
V =
(r) 1 + e—or

(51)
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Its energy eigenvalue equation can be deduced from
Egs. (34), (36) and (37) as
2

2
D+20—1)(D+2¢-3 21V
A 7120(2 <n+%+\/‘l‘_< {4( )> _hlzlrxé)
Enkpproxl - _ 5
" (n chfie w)
(52)

Again by using approximation (2) and repeating the
above procedure, we can consequently obtain the energy
eigenvalues as:

2
1 1 (D+20—1)(D+20-3) 20V
hzocz (n+z+\/z++> _#_

numerical energy eigenvalues and presented plots for var-
ious values of the potential parameters. It is found out that
the numerical values were in good agreement. The results
are in excellent agreement with literature. Finally, our
results can find many applications in quantum mechanical
systems, atomic and molecular physics.

(D+2Z71)4(D+2[73) (€ +1)

2u 4

E’;Akpproxl — o (53)
M (n—k%—&— \/%+(D+2€1)4(D+213))
Again by using approximation (3) and repeating the
above procedure, we can consequently obtain the energy
eigenvalues as
2 2
<n+1+ l_w> o
ox3 B2 | ((D+20—1)(D+2¢—3)C 1 27 V4 4 o
Eﬁ;fp 3_ho (( + )(D + ) 0) 1 (54)

<n+;+ i-W)

Equations (52), (53) and (54) are the energy equation for
Woods—Saxon potential in D Dimensions with different
approximation scheme. If D = 3, Eqgs. (52), (53) and (54)
reduce to energy equation for Woods—Saxon potential in
3D. More so, Eq. (52) is in agreement with Eq. (30) of ref
[61] and Eq. (64) of [62, 63]

6. Conclusion

In this work, we have studied the bound state solutions of
the Schrodinger equation with generalized shifted Hulthén
potential in D dimensions using NU method. We used three
different approximation schemes to deal with the cen-
trifugal term; we obtain the energy eigenvalues and the
corresponding eigenfunctions and also discussed some
special cases of the potential. We have calculated
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