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Abstract 
In this paper, we proposed a family of r-points 1-block implicit methods with optimized region of 
stability. This family of methods is derived with Mathematical 10.4 software and the stability is 
investigated using boundary locus techniques. The block methods are consistence, zero stable, and A-
stable and satisfy other stability requirements which finds them suitable for stiff problems in ODEs. 
Numerical experiments are presented and results are compared with other block methods and exact 
solutions of some stiff ordinary differential equations. The methods have been found to show 
competitiveness with other numerical methods.  
 
Keywords: Block method, stiffness, initial value problems, ordinary differential equation, collocation 
and interpolation, A-stability, boundary locus, linear multistep methods 

 
Introduction 
Differential equations arise in many areas of science and technology, specifically whenever a 
deterministic relation involving some continuously varying quantities (modeled by functions) 
and the rate of change in space or time (expressed as derivatives) is known. Such areas include 
Hamilton’s equations in classical mechanics, Newton’s second law in dynamics; Radioactive 
decay in nuclear complex analysis; the heat equation in thermodynamics; Verhulst equation in 
biological population growth, Lotka volterra equations in biological population dynamics; 
exogenous growth model etc. 
The history of differential equations is traced from calculus, which was independently 
invented by English physicist Isaac Newton in 1676 and a German mathematician Gottfried 
Leibniz in 1693. Other mathematicians like Jacob Bernoulli and Leonard Euler also made 
remarkable contributions to the solutions of differential equations which also arise as a result 
of some physical phenomena in every day’s life.  
Most complex differential equations cannot be solved analytically, therefore approximation to 
the solution becomes imperative. This can be made possible by the application of suitable 
numerical methods. Researchers like [6, 3, 1, 13, 10, 11, 14, 20], etc have proposed different numerical 
methods for solving IVPs in ODEs but some of these methods are not self-starting methods 
and required single step methods to generate other starting values which is computationally 
cumbersome and prone to enormous error since the starting method and the method are not of 
the same order. Our interest in this work is to formulate a family of block methods with 
optimized region of stability suitable for stiff and non-stiff Initial Value problems in Ordinary 
Differential Equations of the form 
 

𝑦′ = 𝑓(𝑥), 𝑦(𝑥0) = 𝑦0, 𝑥 ∈ [𝑎, 𝑏]  (1) 

 
The proposed methods can also perform well for system of first order ODEs. Numerical block 
methods preserve the advantage of being self-starting methods and have minimal errors, it also 
has lesser time of computation since it solve simultaneously at all the grid points unlike some 
other numerical methods [11, 5, 15, 1, 7, 18, 19] etc. have worked on some numerical block methods 
for solution of (1) and have presented results that are competitive.  

www.mathsjournal.com
https://doi.org/10.22271/maths.2022.v7.i4a.842


 

~23~ 

International Journal of Statistics and Applied Mathematics https://www.mathsjournal.com 
 

Derivation of the Methods 

Our interest in this section is to construct the proposed Linear Multistep Methods that generate the block method. We consider 

polynomial interpolant of the form:  

 

𝑝(𝑥) = ∑ 𝑎𝑗𝑥𝑗2𝑟
𝑗=0  which also approximates the solution of (1) as  

 

𝑦(𝑥) = ∑ 𝑎𝑗𝑥𝑗2𝑟
𝑗=0 , ie. p(x) ≈ y(x) 

 

and  

 

𝑦′(𝑥) = ∑ 𝑗𝑎𝑗𝑥𝑗−12𝑟
𝑗=1 . 

 

Collocating and interpolating at the different grid points generates the block in the form of  
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  , BBA  are rXr matrices, A0a unit diagonal matrix, h is the fixed step size, d and s are stability parameters of the 

methods and r = 2, 3,.... 

 









































1..000

010...

0010..

0.0100

0..010

0..001

0
A

, 







































1..000

100...

1000..

1.0000

1..000

1..000

1
A

, 

















































rnnrnr

rrr

rrr

rrr

r

aaa

aaa

aaa

aaa

aaa

B

)1(21

42313

32212

221

21

1

...

......

...

...

...

...



















































rnnrnr

rrr

rrr

rrr

r

ccc

ccc

ccc

ccc

ccc

B

)1(21

42313

32212

221

21

0

...

......

...

...

...

...

, 

 

 where n = 0, 1, 2,… 
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Y and 
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F are defined as 
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For r=2 we have  
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And (2) above becomes  
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Expand (3) we obtain 
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Obtaining the unknown parameters in (4) with Mathematica (10.4) we obtain 
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We have 
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for r = 3 we have 
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𝐸𝑥𝑝𝑎𝑛𝑑 (6) 𝑤𝑒 𝑜𝑏𝑡𝑎𝑖𝑛  
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Obtaining the unknown parameters in (7) with Mathematica (10.4) we have 
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we have 
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Expanding (9) we have 
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Obtaining the unknown parameters in (10) with Mathematical (10.4) we have 

 



















































945

106

35

8

945

64

945

8

4480

2777

4480

513

4480

117

4480

13

420

167

105

2

756

1
0

120960

68323

4480

353

120960

1879

120960

191

1
B

,
















































945

278

945

1448

35

8

945

1784

896

9

896

337

896

1107

4480

3897

756

1

105

2

420

167

945

1172

120960

191

120960

1879

4480

353

120960

68323

0
B

 

 

For r = 5 we have  
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And (2) above becomes  
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Note 
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To obtain unknown parameters in (12) with Mathematical (10.4) we have 

 

































































145152

298505

18144

16775

36288

11975

290304

20675

3584

25

14175

2764

14175

1336

14175

572

2835

26

14175

13

44800

26321

1120

123

11200

351

12800

77

12800

7

56700

23189

28350

701

56700

167

113400

23
0

3628800

2067169

453600

40111

25920

581

7257600

28939

7257600

2497

1
B

,  

 

































































290304

81385

290304

478525

36288

7225

18144

50425

145152

131575

14175

94

14175

4909

14175

19192

2835

1628

14175

20908

89600

113

17920

351

11200

4559

5600

6609

44800

41553

113400

23

56700

167

28350

701

56700

23189

11340

13903

7257600

2497

7257600

28939

25920

581

453600

40111

3628800

2067169

0
B

 

https://www.mathsjournal.com/


 

~29~ 

International Journal of Statistics and Applied Mathematics https://www.mathsjournal.com 
 

Consistency of the Method: The LMM method can be proved to be consistent if and only if the following conditions are satisfied 
[9]. 

 

∑ 𝛼𝑖

𝑘

𝑖=0

= 0, ∑ 𝑖𝛼𝑖

𝑘

𝑖=0

= ∑ 𝛽𝑖

𝑘

𝑖=0

 

 

Definition (1.1): Block method is consistent if it has order at least one [4]. 

 

Zero Stability: Block method is said to be zero stable if the roots r of the characteristics polynomial ρ(r) defined by ρ(r) 
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Therefore, the block method is zero stable. 

 

Theorem (1.1): The necessary conditions for LMM to converge are; it must be consistent and zero stable [8]. 

Since the method satisfies these conditions, therefore it is convergent. 

 

Stability of the method: Consider the block method below (2) above  
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Applying the test equation (13) on (2) we have 
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Where (𝐴0 −
𝑧

𝑑
𝐵0)

−1

(𝐴1 +
𝑧

𝑠
𝐵1) is called amplification matrix of the method? 

 

Order and Error Constant 

 

Definition (1.2): The order of LMM and its associated linear operator given by  

 

𝐿[𝑦(𝑥); ℎ] = ∑[𝛼𝑗𝑦(𝑥 + 𝑗ℎ) − ℎ𝛽𝑗𝑦′(𝑥 + 𝑗ℎ)]

𝑘

𝑗=0

 

 

Is defined as a unique integer p such that 𝐶𝑝 = 0, 𝑞 = 0(1)𝑝 𝑎𝑛𝑑 𝐶𝑝+1 ≠ 0 

Where the 𝐶𝑞are constant defined as 

 

𝐶0 = 𝛼0 + 𝛼1 + ⋯ + 𝛼𝑘 
 

𝐶1 = 𝛼1 + 2𝛼2 + ⋯ + 𝑘𝛼𝑘 − (𝛽1 + ⋯ + 𝛽𝑘) 

 

𝐶𝑞 =
1

𝑞!
(𝛼1 + 2𝑞𝛼2 + ⋯ + 𝑘𝑞𝛼𝑘) −

1

(𝑞 − 1)!
(𝛽1 + 2𝑞−1𝛽2 + ⋯ + 𝑘𝑞−1𝛽𝑘) 

 

𝑞 = 2,3, … . 𝑘 [7]. 

 

The associated linear operator (2) is  

 

𝐿[𝑦(𝑥); ℎ] =  𝐴0𝑌𝑚 − 𝐴1𝑌𝑚−1 −
ℎ

𝑠
𝐵1𝐹𝑚−1 −

ℎ

𝑑
𝐵0𝐹𝑚  (16) 

 

Expanding (16) we obtain  

 

𝐿[𝑦(𝑥); ℎ] = 𝑐0𝑦(𝑥𝑛) + 𝑐1ℎ𝑦′(𝑥𝑛) + ⋯ + 𝑐𝑝ℎ𝑝𝑦𝑝(𝑥𝑛) + ⋯  

 

The methods (2) is said to be of order p if 𝑐0 = 𝑐1 = ⋯ = 𝑐𝑝 = 0 𝑎𝑛𝑑 𝑐𝑝+1 ≠ 0 where 𝑐𝑝+1 is the error constant of the block 

method. Therefore the order p and the associated error constant for each r-point is given as follows.  

 

for r =2 is of order p = 4 with error constant 

T












90

1

720

11
 

 

for r = 3 is of order p = 6 with error constant, 

T












2240

29

756

1

60480

191
 

 

for r = 4 is of order p = 8 with error constant, 
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Definition (1.3): A numerical method is said to be A-Stable if the stability region contain the entire left hand side of the complex 

plane [4]. 

One of the basic requirements for every numerical method to solve stiff IVPs in ODEs is that the method must be A-stable. 

Applying the boundary locus techniques on the amplification matrix of (2) we have 
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Fig 1: A-stable method for r =2, d= -1 and s= -1. 

 

 
 

Fig 2: A-stable method for r =3 at d = -1 and s = -6.5 
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Fig 3: A-stable method for r = 4, d = -0.35 and s = -6.8 
 

 
 

Fig 4: A-stable method for r =5, d = -0.16 and s = -10.2 
 

Implementation of the Method 
This section considers numerical experiments of the proposed block methods for solution of system of first order IVPs in ODEs.  

Problem 1: 
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𝑦′ =
𝑦(1 − 𝑦)

2(𝑦 − 1)
, 𝑦(0) =

5

6
, 0 ≤ 𝑥 ≤ 1  

 

𝐸𝑥𝑎𝑐𝑡 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 

 

𝑦(𝑥) =  
1

2
+ √

1

4
−

5

36
𝑒−𝑥  (16) 

 

Problem 2: 

 

𝑦′ = −
𝑦3

2
, 𝑦(0) = 1, 0 ≤ 𝑥 ≤ 4 

 

𝐸𝑥𝑎𝑐𝑡 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛  
 

𝑦(𝑥) =
1

√1 + 𝑥
 

 

Problem 3: 

 

𝑦′ = 𝑦, 𝑦(0) = 1, ℎ = 0.1 

 

𝐸𝑥𝑎𝑐𝑡 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛  
 

𝑦(𝑥) = 𝑒𝑥 [1]. 

 

Problem 4: Consider the system of equations  

 

𝑋′(𝑡) = 998𝑋(𝑡) + 1998𝑌(𝑡), 𝑋(0) = 1, 
 

𝑌′(𝑡) = −999𝑋(𝑡) − 1999𝑌(𝑡), 𝑌(0) = 0, 
 

The exact solutions are  

 

𝑋(𝑡) = 2𝑒−𝑡 − 𝑒−1000𝑡 
 

𝑌(𝑡) = 𝑒−1000𝑡 − 𝑒−𝑡 . [2]. 

 
Table 1: Numerical solution for problem 1 

 

X 
Theoretical 

Solution 

3PBEBDF 

ORDERP=6 [17] 

Proposed Method 

Order P=6 

Error Between Exact 

Solution and 3PBEBDF [17] 

Error Between Exact Solution and 

Proposed Method of order p=6 

0.0 1.8333333 1.8333333 1.8333333 0 0 

0.1 0.8526020 0.8527450 0.8526350 0.0001430 0.0000420 

0.2 0.8691712 0.8690573 0.8691573 0.0001139 0.0000128 

0.3 0.8835474 0.8829767 0.8829767 0.0005707 0.0002505 

0.4 0.8961060 0.8960859 0.8960959 0.0000201 0.0000101 

0.5 0.9071359 0.9065019 0.9068239 0.0006340 0.0003120 

0.6 0.9168647 0.9155497 0.9167617 0.0013150 0.0001030 

0.7 0.9254760 0.9253058 0.9254158 0.0001702 0.0000602 

0.8 0.9331203 0.9321562 0.9328783 0.0009641 0.0002420 

0.9 0.9399227 0.9381680 0.9391680 0.0017547 0.0007547 

1.0 0.9459884 0.9439650 0.9449762 0.0020234 0.0010122 

 
Table 2: Numerical solution for problem 2 

 

X 
Theoretical 

Solution 

3PBEBDF 

ORDER P=6 [17] 

Proposed Method 

Order P=6 

Absolute Error Between Exact 

Solution and 3PBEBDF [17] 

Error Between Exact Solution and 

Proposed Method of order p =6 

0.0 1.0000000 1.0000000 1.0000000 0 0 

0.1 0.9534626 0.9531365 0.9533494 0.0003261 0.0001132 

0.2 0.9128709 0.9131317 0.9128106 0.0002608 0.0000603 

0.3 0.8770580 0.8783667 0.8767493 0.0013087 0.0003087 

0.4 0.8451543 0.8452111 0.8451295 0.0000568 0.0000248 

0.5 0.8164966 0.8180010 0.8161924 0.0015044 0.0003042 
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Table 3: Numerical solution for problem 3 
 

X 
Theoretical 

Solution 
Ajileye et al. [1] 

Proposed Methods at 

Order p=4 

Error Between Exact 

solution and Ajileye et al. [1] 

Error Between Exact solution and 

The proposed methods at p=4 

0.1 1.1501709187 1.1501709178 1.1501709186 0.0000000009 0.0000000001 

0.2 1.2214027581 1.2214027576 1.2214027580 0.0000000005 0.0000000001 

0.3 1.3498588075 1.3498588067 1.3498588073 0.0000000008 0.0000000002 

0.4 1.4918246976 1.4918246964 1.4918246977 -0.0000000012 -0.0000000001 

0.5 1.6487212707 1.6487212269 1.6487212704 0.0000000438 0.0000000003 

0.6 1.8221188003 1.8221187982 1.8221188012 0.0000000021 -0.0000000009 

0.7 2.0137527074 2.0137527047 2.0137527072 0.0000000027 0.0000000002 

0.8 2.2255409284 2.2255409250 2.2255409281 0.0000000034 0.0000000003 

0.9 2.4596031111 2.4596031068 2.4596031101 0.0000000043 0.0000000001 

1.0 2.7182818284 2.7182818241 2.7182818283 0.0000000042 0.0000000001 

 
Table 4: for problem 4 

 

h  Exact Solution X(t) Proposed Method of Order P=4 Error Between Exact and The Proposed Method of Order p=4 

0.0 
x(t) 1.000000000 1.000000000 0.0000000000 

y(t) 0.000000000 0.000000000 0.0000000000 

0.2 
x(t) 1.637461506 1.637461506 0.0000000000 

y(t) -0.8187307531 -0.8187307507 0.0000000002 

0.4 
x(t) 1.340640092 1.340640092 0.0000000000 

y(t) -0.6703200460 -0.6703200464 0.0000000004 

0.6 
x(t) 1.097623272 1.097623272 0.0000000000 

y(t) -0.5488116361 -0.5488116386 0.0000000025 

0.8 
x(t) 0.899353050 0.899399929 0.000046879 

y(t) -0.4493289641 -0.4493289662 0.0000000021 

1.0 
x(t) 0.736470389 0.736458088 0.000012301 

y(t) -0.3678794412 -0.3678794425 0.0000000013 

 

Conclusion 

A new family of block methods have been developed using a polynomial interpolant as a basis function. The family of the block 

methods has small error constant at high order which is a good property of every efficient numerical integrator. The boundary 

Locus shows that the method is A-stable for all values of r = 2, 3, 4, and 5with varying stability parameters s and d. 

Numerical Integrator for stiff IVPs in ODEs must have a wider region of absolute stability and which also our proposed block 

method has and therefore, it is suitable for stiff IVPs in ODEs it also satisfies other stability requirements like consistency and 

zero stability. The method was demonstrated in three stiff problems and results are displayed in table 1, 2, 3,.. This result shows 

high competitiveness with the exact solutions and some existing numerical methods. Therefore proposed block method is suitable 

and also recommended for system of first order IVPs in ODEs. 
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