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Abstract

Comparative analysis of the existing and the modified techniques for solving second-
order response surface design problems is considered in this paper. The new
technique proffers a better solution procedure with regards to the exploration of near-
optimal factors settings as well as the location of the optimum as compared to the
“gambling nature” of the already existing method which explores the optimal region
with little or no guarantee of precision. Numerical illustration using a second order

response surface design problem confirms this assertion.

Key words: Response Surface Design, Central Composite Design, Mean-Centre
Algorithm, Newton-Raphson Algorithm, Steepest Ascent method, First order model.

1. Introduction

Response Surface Methodology is a collection of mathematical and statistical
techniques for analysing problems where several factors assumed continuous and
controllable by the process engineer with negligible error influence a response
variable and the goal is to optimize the response, Montgomery [1995]. The method
was invented by G.E.P Box and K.B. Wilson in 1951 primarily for optimizing
processes. It usually starts with fitting First Order Models to Response Surface design
problems in small regions remote from the optimum and progressively moves to the
optimal region using the Method of Steepest Ascent or Descent as the case may be.
The prompting to continue or discontinue the fitting of First-order models to the
design problem is usually indicated by a Lack-of-Fit Test. If this test indicates
inadequacy of First-order models, then Second-order models are fit to cater for
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curvature, Cochran [2] and Montgomery [1] .This inadequacy also implies that we are
near the optimum. In this event, the design problem becomes a Second-order
Response Surface Design Problem but no more a First-order Response Surface
Design Problem, Montgomery [1].

Designs used for fitting first and second order models in response surface
methodology are called Response Surface Designs, Cochran [3] and Montgomery [1]
The ones used for fitting first order models are called First Order Designs while those
used for fitting second order models are called Second Order Designs, Cochran [3]
The most commonly used first order design is the 2*- factorial design since it
possesses the feature of rotation. While the most commonly used efficient second
order design is the Central Composite Design, Montgomery [1] and Buyske and
Trout [4]. This particular design is a 2 - factorial design augmented with centre and
axial points Cochran [3] ,Draper et al. [5] and Wu and Yuan [6].

To explore for near-optimal factors settings in the optimal region especially in
events where the process experiences spontaneous momentary shifts from the
optimum the existing RSM procedure implements a canonical analysis. This
procedure is unsure and involves gambling with near-optimal factors settings on the
part of the process engineer. Akpan & Usen (2013) has proposed an improvement of
the Response Surface Methodology procedure for combating this problem with
improved precision. The proposed improvement utilized the fusion of two iterative
algorithms — Newton-Raphson and Mean-Centre algorithms. In this paper, we have
implemented both procedures on a selected case study based on which we have
compared both procedures. The proposed procedure corrects the observed deficiency.

2. Numerical Illustration Using the Existing Procedure

To illustrate the use of the existing and proposed procedures we shall consider
the case study below from Montgomery [1].
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Case Study:

A chemical engineer was interested in determining the operating conditions
that maximize the yield of his process. Two controllable variables influenced process
yield — Reaction time and Reaction Temperature. He was operating the process with
reaction time of 35 minutes and reaction temperature of 155 degrees Fahrenheit
which resulted in yields around 40 percent. Since it was unlikely that this region
contained the optimum, a First Order Model was fit and the Method of Steepest
Ascent applied. The engineer decided that the region of exploration for fitting the

FOM should be (30, 40) minutes of reaction time and (150, 160) degrees Fahrenheit

of reaction temperature.

To simplify the calculations, we coded the independent variables to a - (—1, 1)
interval. Thus if & denotes the natural variable time and &, denotes the natural

variable temperature, then the coded variables are

(o685 6155
5 5

Table | shows the data display.

TABLE | — Process Data for Fitting of the first FOM

Natural Variables Coded Variables Responses
& &, X X, y
30 150 -1 -1 39.3
30 160 -1 1 40.0
40 150 1 -1 40.9
40 160 1 1 41.5
35 155 0 0 40.3
35 155 0 0 40.5
35 155 0 0 40.7
35 155 0 0 40.2
35 155 0 0 40.6

The design used to collect the data is a 2° factorial augmented by 5 centre
points. Repeat observations at the centre were used to estimate the experimental error.
The design is centred about the current operating conditions for the process. Using
MINITAB we obtained the following:
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The first regression equation is
y =40.4 + 0.775 x1 + 0.325 x2

Predictor Coef SE Coef T P

Constant 40.4444 0.0573 705.99 0.000
x1 0.77500 0.08593 9.02 0.000
X2 0.32500 0.08593 3.78 0.009

S=0.171863 R-Sq=94.1% R-Sq(adj) = 92.1%

Analysis of Variance

Source DF SS MS F P
Regression 2 2.8250 1.4125 47.82 0.000
Residual Error 6 0.1772 0.0295
Lack of Fit 2 0.0052 0.0026 0.06 0.942
Pure Error 4 0.1720 0.0430
Total 8 3.0022

Source DF  Seq SS
x1 1 2.4025
X2 1 0.4225

No evidence of lack of fit (P >= 0.1).

2249

Contour Plot of y vs x1, x2
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FIG. I - Contour graph for the First First-order Model
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To move away from the design centre [the point (x, = 0,x, =0)] along the path
of steepest ascent, we moved 0.775 units in the x, - direction for every 0.325 units in
the x, - direction. Thus, the path of steepest ascent passed through the points

(x, =0,x, =0) and had slope - X, 0325
X, 0.775
We decided to use five minutes of reaction time as the basic step size. Using

the relationship between & and x, we observed that five minutes of reaction time is
equivalent to a step in the coded variable x, of - Ax, =1. Therefore, the steps along

the path of steepest ascent are Ax, =1.0000 and - Ax, = (%

Ax, =0.4194 .
0.775

We computed points along this path and observed yields at these points until a
decrease in response was noted. The results are shown in Table Il. The steps are
shown in both coded and natural variables. While the coded variables are easier to
manipulate mathematically, the natural variables must be used in running the process.
Increase in response was observed through the tenth step. However, the eleventh step
produced a decrease in yield. Therefore, another first-order model had to be fit in the

general vicinity of the point - (£, =85, &, =175.970).

TABLE Il — Steepest Ascent Experiment for the First First-order Model

Coded variables Natural variables Response
Xl X2 ézl §2 y
Origin 0 0 35 155
A 1.0000 0.4194
Origin+ A 1.0000 0.4194 40 157.097 41.0
Origin+2A 2.0000 0.8388 45 159.194 41.9
Origin+3A 3.0000 1.2582 50 161.291 43.1
Origin+4A 4.0000 1.6776 55 163.388 43.7
Origin+5A 5.0000 2.0970 60 165.485 44.1
Origin + 6A 6.0000 2.5164 65 167.582 44.3
Origin+7A 7.0000 2.9358 70 169.679 52.1
Origin+8A 8.0000 3.3552 75 171.776 63.8
Origin +9A 9.0000 3.7746 80 173.873 78.3
Origin +10A 10.0000 4.1940 85 175.970 80.3
Origin+11A 11.0000 4.6134 90 178.067 79.2
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A second FOM was fit about the point - (& =85, &, =175). The region of
exploration for & was (80,90) and for &, it was - (170,180). Thus the coded

variables were

The data is shown in Table 111 below.

TABLE I11 — Data for Fitting the Second First-order Model

Natural variables Coded variables Responses
é:l 52 Xl X2 y
80 170 -1 -1 76.5
80 180 -1 1 77.0
90 170 1 -1 78.0
90 180 1 1 79.5
85 175 0 0 79.9
85 175 0 0 80.3
85 175 0 0 80.0
85 175 0 0 79.7
85 175 0 0 79.8

Again, the design used to collect the data is a 2* factorial augmented by 5
centre points. Repeat observations at the centre were used to estimate the
experimental error. The design was centred about the current operating conditions for
the process. Using MINITAB we obtained the following:

The regression equation is
y =79.0 + 1.00 x1 + 0.500 x2

Predictor Coef SE Coef T P

Constant 78.9667 0.4538 174.02 0.000
x1 1.0000 0.6807 1.47 0.192
X2 0.5000 0.6807 0.73 0.490

S=1.36137 R-Sq=31.0% R-Sq(adj) = 8.0%
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Analysis of Variance

Source DF SS MS F P
Regression 2 5.000 2.500 1.35 0.328
Residual Error 6 11.120 1.853
Lack of Fit 2 10.908 5.454 102.91 0.000
Pure Error 4 0.212 0.053
Total 8 16.120

Source DF Seq SS
x1 1 4.000
X2 1 1.000

Lack of fit test

Possible curvature in variable x1 (P-Value = 0.012)
Possible curvature in variable x2 (P-Value = 0.012)
Possible lack of fit at outer x-values (P-Value = 0.011)
Overall lack of fit test is significant at P = 0.011

Contour Plot of y vs x1, x2

X1

'10 T T T 1
-1.0 -0.5 0.0 0.5 1.0

FIG. Il - Contour graph for the Second First-order Model

This curvature in the true surface may indicate that we are near the optimum. At this

point, additional analysis had to be done to locate the optimum more precisely.

A second-order model in the variables - x,, x, cannot be fitted using the data

in Table 111. We decided to augment these data with enough points to fit a second-
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order model. To do this, we obtained four observations at (x, =0, x, = +1.414) and -

(x, = £1.414, x, =0). The complete data set is shown in Table IV.

TABLE IV - Central Composite Design for the Case Study

Natural Variables Coded Variables Responses
é:l §2 Xl X2 y
80 170 -1 -1 76.5
80 180 -1 1 77.0
90 170 1 -1 78.0
90 180 1 1 79.5
85 175 0 0 79.9
85 175 0 0 80.3
85 175 0 0 80.0
85 175 0 0 79.7
85 175 0 0 78.4
92.07 175 1.414 0 78.4
77.93 175 -1.414 0 75.6
85 182.07 0 1.414 78.5
85 167.93 0 -1.414 77.0
Using MINITAB we obtained the following:
The regression equation is
y=79.9+0.995 x1 + 0.515 x2 - 1.38 x1"2 - 1.00 x2"2 + 0.250 x1x2
Predictor Coef SE Coef T P
Constant 79.9400 0.1191 671.26 0.000
x1 0.99505 0.09415 10.57 0.000
X2 0.51520 0.09415 5.47 0.001
X172 -1.3764 0.1010 -13.63 0.000
X2/"\2 -1.0013 0.1010 -9.92 0.000
xX1x2 0.2500 0.1331 1.88 0.103
S=0.266290 R-Sq=198.3% R-Sq(adj) =97.0%
Analysis of Variance
Source DF SS MS F P
Regression 5 28.2467 5.6493 79.67 0.000
Residual Error 7 0.4964 0.0709
Lack of Fit 3 0.2844 0.0948 1.79 0.289
Pure Error 4 0.2120 0.0530
Total 12 28.7431
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Source DF  SeqSS
x1 1 7.9198
X2 1 2.1232
X112 1 10.9816
x2"2 1 6.9721
X1x2 1 0.2500

No evidence of lack of fit (P >=0.1).

Contour Plot of y vs x1, x2
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x2

FIG. Il - Contour graph for the Second-order Model

To obtain the optimum operating condition using the existing procedure, we recall
that the second-order model is

§ =79.9+0.995x, +0.5151x, —1.38x7 —1.00X2 +0.250x,X,

We now perform the canonical analysis. Note that
b 0.995 B -1.38 0.125
(05151 10125 -1.00
The stationary point is
X, =——B"b

But
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4 (—0.732936326 —0.09161704
—-0.09161704 —1.01145213

=X, =——
0 —0.09161704 -1.01145213){0.5151

1 (— 0.732936326 - 0.09161704j ( 0.995 J
2

 1(-0.776463581
21 -0.612157947

0.38823179
0.306078973

That is, x,,=0.38823179and - X, , =0.306078973. In terms of the natural variables,

the stationary point is

038823179::§L§§§ 0306078973::§1€§Z§
which yields & =86.94115895 and - &, =176.5303949. The predicted response at the

stationary point is ¥, =80.17197596 and is gotten as follows.

90==7994~%(038823179 Q306078973)(

0.995
0.5151

=80.17197596

To further characterize the stationary point we obtain the canonical form of the

fitted model. The eigen values 4, and A, are the roots of the determinant equation
B-A1|=0
-138-14 0125 |
0125 -1.00-4|

which reduces to
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= 2’ +2.384+1.364375 =0

—2.38+/(2.38)" — 4(1)1L.364375)
=> A=
2(1)
=-0.962568692 or —1.417431308

The roots of this quadratic equation are A =-0.962568692 and -
A, =—=1.417431308. Thus the canonical form of the fitted model is

¥ =80.17197596 —0.962568692w; —1.417431308w,

Since both 4, and A, are negative and the stationary point is within the region

of exploration, we conclude that the stationary point is a maximum.

Now, as an illustration, suppose that a process engineer could not operate the
process at & =86.94115875 and &, =176.5303949 owing to machine deterioration

overtime. We now wish to “back away” from the stationary point to a point of lower
cost, but without large losses in yield. The canonical form of the model indicates that

the surface is less sensitive to yield loss in the w; direction. Exploration of the
canonical form requires converting points in the (wl,wz) space to points in the

(., x,) space.

We illustrate the procedure wusing the fitted second-order model.
For 4, =—-0.962568692, we have

{(—1.38+ 0.96256869) 0.125 } {mn} _ m

0.125 (-1.00+0.96256869) || m,, | |0
~0.41743131m,, +  0.125m,, = O
0.125m,, — 0.03743131m,, = 0

We wish to obtain the normalized solution to these equations, that is, the one
for which - m’ +m2, =1. There is no unique solution to these equations, and it is
most convenient to assign an arbitrary value of one of the unknowns, solve the

system, and then normalize the solution. Letting m; =1 we find -
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m;; =0.299450465. To normalize this solution divide m;, and m; by -

(i} + ()

Jlmy J +(m3, f =1/(0.299450465) +12

=1.043872876
This yields the normalized solutions

m;, _ 0.299450465

m,, = = = 0.286864877
1.043872876  1.043872876

m,, 1

m,, = ~ = 0.957971054
1.043872876 1.043872876

which is the first column of the M matrix.

We now use - 4, =—-1.417431308. Thus we have

{(—1.38 +1.417431308) 0.125 } {mu} | m

0.125 (-1.00+1.417431308) || m,, | |0
—0.037431308m,, + 0.125m,, =0
0.125m,, — 0.417431308m,, = 0

Letting m;, =1 we find - m;, =-3.339450494 . To normalize this solution, divide

m,, and m;, by (ml*2 )2 +(m’;2 )2

Jlmg, F o+ (m3, = +/(-3.339450494 +12

_ 3.485961789
This yields the normalized solutions
m, =M 3339450494 ) o57971055
348506179  3.48596179
M __ 1 _(og6864877

m,, = =
3.48596179 3.48596179
which is the second column of the M matrix. Thus, we have
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1 0.286864877 —0.957971055
10.957971054  0.286864877
The relationship between the - w and X variables is

{wl} { 0.286864877 0.957971054M x, —0.38823179 }

W, —0.957971055 0.286864877 || x, —0.306078973

If the process engineer wished to explore the response surface in the vicinity
of the stationary point, he would determine appropriate points (by experience or

gambling) to take observations in the (w,,w,) space and then use the above
relationship to convert these points into the (x,, x,) space so that the runs may be

made.
3. Numerical Illustration Using the Proposed Procedure

Define f(x,) the second-order model.
f(x,)="79.9+0.995x, +0.5151x, —1.38x? —1.00x + 0.250, X,
Define X, = (Xoy: Xgp» Xgss---» Xor, ) the design centre.
X, =(0,0)
Define Optimum (Opt), the optimum yield gotten by classical technique.

Opt =80.17192693
Stepd: Input X, = (X1, Xp» Xegre- s Xy ) N F(X,)
X, =(0,0)
Step 2: Evaluate E, = f(x,) at X,
E, = f(x,)=79.9

Step 3: Evaluate Allowed Error
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AErr =O0pt — f(x,)
=80.17192693-79.9
=0.27192693

Step 4: Evaluate the Jacobian gradient g, at the root x,

ot (x,)

%)
0, = Vf (Xt): of (X)tt)

0X,

~(0.995-2.76x, +0.250x,
- 10.5151—2.00x, +0.250x,

At the point x,

90=Vf(xo)=[

0.995
0.5151

Step 5: Evaluate the Hessian H, and its inverse H," at x,

% f(x,) @*f(x,)

o - OX; OX,OX,
1 otf(x,) a%f(x,)
OX,0%, ox?
—-2.76 0.250
=>H, =
0.250 -2.00

., (—0.366468163 —0.04580852
! —0.04580852 —0.505726065

Step 6: Evaluate the direction of improvement

H{'g,
Hg

U, =AX, =

Where
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g =0 F + 0+ f -+ (6 F

Hog - —0.366468163 —0.04580852 \( 0.995
090 = —0.04580852 —0.505726065 )| 0.5151

_( —0.38823179
~ 1 -0.306078973

|H5'go| = (~0.38823179) + (- 0.306078973)"
— 0.494376638

~0.38823179
~ (-0.306078973
° 0.494376638

—0.785295582
—-0.619121029
Step 7: Evaluate the optimum step length A4, in the direction U,

Xiq =X +2’tUt
= X, =X, +4,U,

0 —0.785295582
= + 4,
0 ~0.619121029
= (—0.7852955824, —0.619210294,)

= f(x,)= f(~0.7852955824, -0.6191210291,)
= f(x,)=79.9-1.1002783464, —1.112793769.1
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of (x,)
04,

=0

of (x,)

0

=-1.100278346 — 2.225587538 4,

- _1.100278346
° 2225587538

— _0.494376575
0 —0.785295582
X, =| _ |+(~0.494376575)
0 ~0.619121029
_(0.38823174
~10.306078933

f(x,)=80.17197596

This procedure gives us our optimum in one iterates. We now use the Mean-

Centre algorithm with the design centre x0=(0, 0) and the optimal setting

X" =(0.38823174, 0.306078933) as initial approximations to explore for near-optimal

settings in the optimal region. We have done this for two iterates.
Step 8: Explore for near-optimal settings in the optimal region

f (x*)=80.1719759
Input X, = (Xog» Xop» Xozr---» X ) @NA X =(x1*,x;‘,x§,...,x;)

X, =(0,0) and x* =(0.38823174, 0.306078933)

s

+X

X
Step 9: Evaluate x,,, =—' 5 att=0

! 2 2

0 N 0.38823174
_Xo+x" (0] 10.306078933) ( 0.19411587
B 0.153039466
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Step 10: Evaluate f(x,,,) att=0
f(x,)=80.10398195

Step 11: If f(x,,,)< f(x*) increase t by one and go to step nine. Else, stop and set
Xy =X if f(xt+1): f(X*)

since (x,)< f(x") we go to step nine

0.19411587 N 0.38823174
_x,+x"0.153039466 0.306078933

X
2 2 2

0.291173805
0.229559199

Evaluating - f(x,,,) at t =1 we have
f(x,)=80.14569389

Since f(x2)< f(x*) the procedure continues until the termination criterion is

satisfied. As we progress, in this routine, we obtain several near-optimal operating

conditions before reaching the optimum itself.
4. Comparison of the Existing and Proposed Procedures

Using the existing response surface technique the optimal operating condition
is located with the Classical Derivative Technique whereas using the proposed
improvement the optimal operating condition is located with the Newton-Raphson
Technique. In this case, the design centre is used as a good initial approximation
which guarantees that the optimum operating condition is obtained in one iterate or

one more.

Exploration of optimal region for near-optimal settings is achieved with
Canonical Transformation Procedure using the existing response surface technique.
The existing procedure for achieving this is more or less a gambling process. Hence
guarantees no precision. However, it is flexible. But exploration of optimal region for
near-optimal settings is achieved with the Mean Centre Algorithm using the proposed
improvement. It requires no transformation or gambling. Hence, it guarantees

precision and gives near-optimal yields. However, it is not flexible.
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5. Conclusion

An improvement of the existing response surface technique has been proposed for
solving second-order response surface design problems. It comprises the fusion of two
iterative algorithms - Newton-Raphson and Mean-Centre. The improvement unravels
the design centre in the optimal region as a good initial approximation for starting the
Newton-Raphson iteration; it also affords process engineers the ease and liberty of

exploring near-optimal operating conditions in the optimal region.
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